PATTERN = "(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9])" # Deep learning import torch import torch.nn as nn import torch.nn.functional as F import torch.backends.cudnn as cudnn # Transformers from fast_transformers.attention import AttentionLayer from fast_transformers.events import QKVEvent from fast_transformers.transformers import TransformerEncoder, TransformerEncoderLayer from fast_transformers.builders.transformer_builders import BaseTransformerEncoderBuilder from fast_transformers.builders.attention_builders import AttentionBuilder from fast_transformers.feature_maps import GeneralizedRandomFeatures from fast_transformers.masking import LengthMask from transformers import BertTokenizer # Data import numpy as np import pandas as pd # Standard library from functools import partial import regex as re import random import os import gc from tqdm import tqdm tqdm.pandas() class MolTranBertTokenizer(BertTokenizer): def __init__(self, vocab_file: str = '', do_lower_case=False, unk_token='', sep_token='', pad_token='', cls_token='', mask_token='', **kwargs): super().__init__(vocab_file, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, **kwargs) self.regex_tokenizer = re.compile(PATTERN) self.wordpiece_tokenizer = None self.basic_tokenizer = None with open(vocab_file) as f: self.padding_idx = f.readlines().index(pad_token+'\n') def _tokenize(self, text): split_tokens = self.regex_tokenizer.findall(text) return split_tokens def convert_idx_to_tokens(self, idx_tensor): tokens = [self.convert_ids_to_tokens(idx) for idx in idx_tensor.tolist()] return tokens def convert_tokens_to_string(self, tokens): stopwords = ['', ''] clean_tokens = [word for word in tokens if word not in stopwords] out_string = ''.join(clean_tokens) return out_string def get_padding_idx(self): return self.padding_idx def idx_to_smiles(self, torch_model, idx): '''Convert tokens idx back to SMILES text''' rev_tokens = torch_model.tokenizer.convert_idx_to_tokens(idx) flat_list_tokens = [item for sublist in rev_tokens for item in sublist] decoded_smiles = torch_model.tokenizer.convert_tokens_to_string(flat_list_tokens) return decoded_smiles ## Transformer layers class RotaryEmbedding(torch.nn.Module): def __init__(self, dim, base=10000): super().__init__() inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer('inv_freq', inv_freq) self.seq_len_cached = 0 self.cos_cached = None self.sin_cached = None def forward(self, x, seq_dim=1): seq_len = x.shape[seq_dim] if seq_len != self.seq_len_cached: self.seq_len_cached = seq_len t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) freqs = torch.einsum('i,j->ij', t, self.inv_freq) emb = torch.cat((freqs, freqs), dim=-1).to(x.device) self.cos_cached = emb.cos()[None,:, None, :] self.sin_cached = emb.sin()[None,:, None, :] return self.cos_cached, self.sin_cached def rotate_half(x): x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:] return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in earlier torch versions @torch.jit.script def apply_rotary_pos_emb(q, k, cos, sin): return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin) class RotateAttentionLayer(AttentionLayer): """Rotate attention layer inherits from fast_transformer attention layer. The only thing added is an Embedding encoding, for more information on the attention layer see the fast_transformers code """ def __init__(self, attention, d_model, n_heads, d_keys=None, d_values=None, event_dispatcher=""): super(RotateAttentionLayer, self).__init__(attention,d_model, n_heads, d_keys=d_keys, d_values=d_values, event_dispatcher=event_dispatcher) self.rotaryemb = RotaryEmbedding(d_keys) print('Using Rotation Embedding') def forward(self, queries, keys, values, attn_mask, query_lengths, key_lengths): """ Using the same frame work as the fast_Transformers attention layer but injecting rotary information to the queries and the keys after the keys and queries are projected. In the argument description we make use of the following sizes - N: the batch size - L: The maximum length of the queries - S: The maximum length of the keys (the actual length per sequence is given by the length mask) - D: The input feature dimensionality passed in the constructor as 'd_model' Arguments --------- queries: (N, L, D) The tensor containing the queries keys: (N, S, D) The tensor containing the keys values: (N, S, D) The tensor containing the values attn_mask: An implementation of BaseMask that encodes where each query can attend to query_lengths: An implementation of BaseMask that encodes how many queries each sequence in the batch consists of key_lengths: An implementation of BaseMask that encodes how many queries each sequence in the batch consists of Returns ------- The new value for each query as a tensor of shape (N, L, D). """ # Extract the dimensions into local variables N, L, _ = queries.shape _, S, _ = keys.shape H = self.n_heads # Project the queries/keys/values queries = self.query_projection(queries).view(N, L, H, -1) keys = self.key_projection(keys).view(N, S, H, -1) cos, sin = self.rotaryemb(queries) queries, keys = apply_rotary_pos_emb(queries, keys, cos, sin) values = self.value_projection(values).view(N, S, H, -1) # Let the world know of the qkv self.event_dispatcher.dispatch(QKVEvent(self, queries, keys, values)) # Compute the attention new_values = self.inner_attention( queries, keys, values, attn_mask, query_lengths, key_lengths ).view(N, L, -1) # Project the output and return return self.out_projection(new_values) class RotateEncoderBuilder(BaseTransformerEncoderBuilder): """Build a batch transformer encoder with Relative Rotary embeddings for training or processing of sequences all elements at a time. Example usage: builder = RotateEncoderBuilder() builder.n_layers = 12 builder.n_heads = 8 builder.feed_forward_dimensions = 1024 builder.query_dimensions = 64 builder.value_dimensions = 64 builder.dropout = 0.1 builder.attention_dropout = 0.1 builder.attention_type = "linear" transformer = builder.get() """ def _get_attention_builder(self): """Return an instance of the appropriate attention builder.""" return AttentionBuilder() def _get_attention_layer_class(self): """Return the class for the layer that projects queries keys and values.""" return RotateAttentionLayer def _get_encoder_class(self): """Return the class for the transformer encoder.""" return TransformerEncoder def _get_encoder_layer_class(self): """Return the class for the transformer encoder layer.""" return TransformerEncoderLayer class AutoEncoderLayer(nn.Module): def __init__(self, feature_size, latent_size): super().__init__() self.encoder = self.Encoder(feature_size, latent_size) self.decoder = self.Decoder(feature_size, latent_size) class Encoder(nn.Module): def __init__(self, feature_size, latent_size): super().__init__() self.is_cuda_available = torch.cuda.is_available() self.fc1 = nn.Linear(feature_size, latent_size) self.ln_f = nn.LayerNorm(latent_size) self.lat = nn.Linear(latent_size, latent_size, bias=False) def forward(self, x): if self.is_cuda_available: self.fc1.cuda() self.ln_f.cuda() self.lat.cuda() x = x.cuda() x = F.gelu(self.fc1(x)) x = self.ln_f(x) x = self.lat(x) return x # -> (N, D) class Decoder(nn.Module): def __init__(self, feature_size, latent_size): super().__init__() self.is_cuda_available = torch.cuda.is_available() self.fc1 = nn.Linear(latent_size, latent_size) self.ln_f = nn.LayerNorm(latent_size) self.rec = nn.Linear(latent_size, feature_size, bias=False) def forward(self, x): if self.is_cuda_available: self.fc1.cuda() self.ln_f.cuda() self.rec.cuda() x = x.cuda() x = F.gelu(self.fc1(x)) x = self.ln_f(x) x = self.rec(x) return x # -> (N, L*D) class LangLayer(nn.Module): def __init__(self, n_embd, n_vocab): super().__init__() self.is_cuda_available = torch.cuda.is_available() self.embed = nn.Linear(n_embd, n_embd) self.ln_f = nn.LayerNorm(n_embd) self.head = nn.Linear(n_embd, n_vocab, bias=False) def forward(self, tensor): if self.is_cuda_available: self.embed.cuda() self.ln_f.cuda() self.head.cuda() tensor = tensor.cuda() tensor = self.embed(tensor) tensor = F.gelu(tensor) tensor = self.ln_f(tensor) tensor = self.head(tensor) return tensor class Net(nn.Module): def __init__(self, smiles_embed_dim, n_output=1, dropout=0.2): super().__init__() self.desc_skip_connection = True self.fc1 = nn.Linear(smiles_embed_dim, smiles_embed_dim) self.dropout1 = nn.Dropout(dropout) self.relu1 = nn.GELU() self.fc2 = nn.Linear(smiles_embed_dim, smiles_embed_dim) self.dropout2 = nn.Dropout(dropout) self.relu2 = nn.GELU() self.final = nn.Linear(smiles_embed_dim, n_output) def forward(self, smiles_emb, multitask=False): x_out = self.fc1(smiles_emb) x_out = self.dropout1(x_out) x_out = self.relu1(x_out) if self.desc_skip_connection is True: x_out = x_out + smiles_emb z = self.fc2(x_out) z = self.dropout2(z) z = self.relu2(z) if self.desc_skip_connection is True: z = self.final(z + x_out) else: z = self.final(z) if multitask: return F.sigmoid(z) return z class MoLEncoder(nn.Module): def __init__(self, config, n_vocab): super(MoLEncoder, self).__init__() # embeddings self.config = config self.tok_emb = nn.Embedding(n_vocab, config['n_embd']) self.drop = nn.Dropout(config['d_dropout']) # transformer builder = RotateEncoderBuilder.from_kwargs( n_layers=config['n_layer'], n_heads=config['n_head'], query_dimensions=config['n_embd']//config['n_head'], value_dimensions=config['n_embd']//config['n_head'], feed_forward_dimensions=None, attention_type='linear', # unless we do deterministic_eval here, we will have random outputs feature_map=partial(GeneralizedRandomFeatures, n_dims=config['num_feats'], deterministic_eval=True), activation='gelu' ) self.blocks = builder.get() # classification self.lang_model = LangLayer(config['n_embd'], n_vocab) def forward(self, idx, mask): # transformer encoder x = self.tok_emb(idx) # each index maps to a (learnable) vector x = self.drop(x) x = self.blocks(x, length_mask=LengthMask(mask.sum(-1), max_len=idx.shape[1])) # add padding token_embeddings = x input_mask_expanded = mask.unsqueeze(-1).expand(token_embeddings.size()).float() mask_embeddings = (token_embeddings * input_mask_expanded) token_embeddings = F.pad(mask_embeddings, pad=(0, 0, 0, self.config['max_len'] - mask_embeddings.shape[1]), value=0) return token_embeddings class MoLDecoder(nn.Module): def __init__(self, n_vocab, max_len, n_embd, n_gpu=None): super(MoLDecoder, self).__init__() self.max_len = max_len self.n_embd = n_embd self.n_gpu = n_gpu self.autoencoder = AutoEncoderLayer(n_embd*max_len, n_embd) self.lang_model = LangLayer(n_embd, n_vocab) class Smi_ted(nn.Module): """materials.smi-ted-Large 738M Parameters""" def __init__(self, tokenizer, config=None): super(Smi_ted, self).__init__() # configuration self.config = config self.tokenizer = tokenizer self.padding_idx = tokenizer.get_padding_idx() self.n_vocab = len(self.tokenizer.vocab) self.is_cuda_available = torch.cuda.is_available() # instantiate modules if self.config: self.encoder = MoLEncoder(self.config, self.n_vocab) self.decoder = MoLDecoder(self.n_vocab, self.config['max_len'], self.config['n_embd']) self.net = Net(self.config['n_embd'], n_output=self.config['n_output'], dropout=self.config['d_dropout']) def load_checkpoint(self, ckpt_path): # load checkpoint file checkpoint = torch.load(ckpt_path, map_location=torch.device('cpu')) # load hyparameters self.config = checkpoint['hparams'] self.max_len = self.config['max_len'] self.n_embd = self.config['n_embd'] self._set_seed(self.config['seed']) # instantiate modules self.encoder = MoLEncoder(self.config, self.n_vocab) self.decoder = MoLDecoder(self.n_vocab, self.max_len, self.n_embd) self.net = Net(self.n_embd, n_output=self.config['n_output'] if 'n_output' in self.config else 1, dropout=self.config['d_dropout']) # load weights if 'state_dict' in checkpoint: if isinstance(checkpoint['state_dict'], list): self.encoder.load_state_dict(checkpoint['state_dict'][0], strict=False) self.decoder.load_state_dict(checkpoint['state_dict'][1], strict=False) else: self.load_state_dict(checkpoint['state_dict'], strict=False) elif 'MODEL_STATE' in checkpoint: self.load_state_dict(checkpoint['MODEL_STATE'], strict=False) # load RNG states each time the model and states are loaded from checkpoint if 'rng' in self.config: rng = self.config['rng'] for key, value in rng.items(): if key =='torch_state': torch.set_rng_state(value.cpu()) elif key =='cuda_state': torch.cuda.set_rng_state(value.cpu()) elif key =='numpy_state': np.random.set_state(value) elif key =='python_state': random.setstate(value) else: print('unrecognized state') def _set_seed(self, value): print('Random Seed:', value) random.seed(value) torch.manual_seed(value) torch.cuda.manual_seed(value) torch.cuda.manual_seed_all(value) np.random.seed(value) cudnn.deterministic = True cudnn.benchmark = False def forward(self, smiles, batch_size=100): return self.decode(self.encode(smiles, batch_size=batch_size, return_torch=True)) def tokenize(self, smiles): """Tokenize a string into tokens.""" if isinstance(smiles, str): batch = [smiles] else: batch = smiles tokens = self.tokenizer( batch, padding=True, truncation=True, add_special_tokens=True, return_tensors="pt", max_length=self.max_len, ) idx = tokens['input_ids'].clone().detach() mask = tokens['attention_mask'].clone().detach() if self.is_cuda_available: return idx.cuda(), mask.cuda() return idx, mask def extract_all(self, smiles): """Extract all elements from each part of smi-ted. Be careful.""" # evaluation mode self.encoder.eval() self.decoder.eval() if self.is_cuda_available: self.encoder.cuda() self.decoder.cuda() # tokenizer idx, mask = self.tokenize(smiles) ########### # Encoder # ########### # encoder forward x = self.encoder.tok_emb(idx) # each index maps to a (learnable) vector x = self.encoder.drop(x) x = self.encoder.blocks(x, length_mask=LengthMask(mask.sum(-1))) # mean pooling token_embeddings = x input_mask_expanded = mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) true_set = sum_embeddings / sum_mask # DO NOT USE THIS FOR DOWNSTREAM TASKS, USE `pred_set` INSTEAD # add padding mask_embeddings = (token_embeddings * input_mask_expanded) token_embeddings = F.pad(mask_embeddings, pad=(0, 0, 0, self.max_len - mask_embeddings.shape[1]), value=0) idx = F.pad(idx, pad=(0, self.max_len - idx.shape[1], 0, 0), value=2) true_ids = idx true_cte = token_embeddings true_cte = true_cte.view(-1, self.max_len*self.n_embd) ########### # Decoder # ########### # CTE autoencoder pred_set = self.decoder.autoencoder.encoder(true_cte) pred_cte = self.decoder.autoencoder.decoder(pred_set) # reconstruct tokens pred_ids = self.decoder.lang_model(pred_cte.view(-1, self.max_len, self.n_embd)) pred_ids = torch.argmax(pred_ids, axis=-1) return ((true_ids, pred_ids), # tokens (true_cte, pred_cte), # token embeddings (true_set, pred_set)) # smiles embeddings def extract_embeddings(self, smiles): """Extract token and SMILES embeddings.""" # evaluation mode self.encoder.eval() if self.is_cuda_available: self.encoder.cuda() # tokenizer idx, mask = self.tokenize(smiles) # encoder forward token_embeddings = self.encoder(idx, mask) # aggregate token embeddings (similar to mean pooling) # CAUTION: use the embeddings from the autoencoder. smiles_embeddings = self.decoder.autoencoder.encoder(token_embeddings.view(-1, self.max_len*self.n_embd)) # add padding idx = F.pad(idx, pad=(0, self.max_len - idx.shape[1], 0, 0), value=self.padding_idx) return idx, token_embeddings, smiles_embeddings def encode(self, smiles, useCuda=False, batch_size=100, return_torch=False): """Extract efficiently SMILES embeddings per batches.""" # TODO: remove useCuda argument # handle single str or a list of str smiles = pd.Series(smiles) if isinstance(smiles, str) else pd.Series(list(smiles)) n_split = smiles.shape[0] // batch_size if smiles.shape[0] >= batch_size else smiles.shape[0] # process in batches embeddings = [ self.extract_embeddings(list(batch))[2].cpu().detach().numpy() for batch in tqdm(np.array_split(smiles, n_split)) ] flat_list = [item for sublist in embeddings for item in sublist] # clear GPU memory if self.is_cuda_available: torch.cuda.empty_cache() gc.collect() if return_torch: return torch.tensor(np.array(flat_list)) return pd.DataFrame(flat_list) def decode(self, smiles_embeddings): """Decode SMILES embeddings back to SMILES.""" # evaluation mode self.decoder.eval() if self.is_cuda_available: self.decoder.cuda() # reconstruct token embeddings pred_token_embds = self.decoder.autoencoder.decoder(smiles_embeddings) # reconstruct tokens pred_idx = self.decoder.lang_model(pred_token_embds.view(-1, self.max_len, self.n_embd)) pred_idx = torch.argmax(pred_idx, axis=-1).cpu().detach().numpy() # convert idx to tokens pred_smiles = [] for i in range(pred_idx.shape[0]): idx = pred_idx[i] smiles = self.tokenizer.idx_to_smiles(self, idx) smiles = smiles.replace('', '') # begin token smiles = smiles.replace('', '') # end token smiles = smiles.replace('', '') # pad token pred_smiles.append(smiles) # clear GPU memory if self.is_cuda_available: torch.cuda.empty_cache() gc.collect() return pred_smiles def __str__(self): return 'smi-ted-Large' def load_smi_ted(folder="./smi_ted_large", ckpt_filename="smi-ted-Large_30.pt", vocab_filename="bert_vocab_curated.txt" ): tokenizer = MolTranBertTokenizer(os.path.join(folder, vocab_filename)) model = Smi_ted(tokenizer) model.load_checkpoint(os.path.join(folder, ckpt_filename)) model.eval() print('Vocab size:', len(tokenizer.vocab)) print(f'[INFERENCE MODE - {str(model)}]') return model