PATTERN = "(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9])" # Deep learning import torch import torch.nn as nn import torch.nn.functional as F import torch.backends.cudnn as cudnn # Transformers from fast_transformers.attention import AttentionLayer from fast_transformers.events import EventDispatcher, QKVEvent from fast_transformers.transformers import TransformerEncoder, TransformerEncoderLayer from fast_transformers.builders.base import BaseBuilder from fast_transformers.builders.transformer_builders import BaseTransformerEncoderBuilder from fast_transformers.builders.attention_builders import AttentionBuilder from fast_transformers.feature_maps import GeneralizedRandomFeatures from fast_transformers.masking import LengthMask from transformers import BertTokenizer # Data import numpy as np # Standard library from functools import partial import regex as re import random class MolTranBertTokenizer(BertTokenizer): def __init__(self, vocab_file: str = '', do_lower_case=False, unk_token='', sep_token='', pad_token='', cls_token='', mask_token='', **kwargs): super().__init__(vocab_file, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, **kwargs) self.regex_tokenizer = re.compile(PATTERN) self.wordpiece_tokenizer = None self.basic_tokenizer = None def _tokenize(self, text): split_tokens = self.regex_tokenizer.findall(text) return split_tokens def convert_idx_to_tokens(self, idx_tensor): tokens = [self.convert_ids_to_tokens(idx) for idx in idx_tensor.tolist()] return tokens def convert_tokens_to_string(self, tokens): stopwords = ['', ''] clean_tokens = [word for word in tokens if word not in stopwords] out_string = ''.join(clean_tokens) return out_string ## Transformer layers class RotaryEmbedding(torch.nn.Module): def __init__(self, dim, base=10000): super().__init__() inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer('inv_freq', inv_freq) self.seq_len_cached = 0 self.cos_cached = None self.sin_cached = None def forward(self, x, seq_dim=1): seq_len = x.shape[seq_dim] if seq_len != self.seq_len_cached: self.seq_len_cached = seq_len t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) freqs = torch.einsum('i,j->ij', t, self.inv_freq) emb = torch.cat((freqs, freqs), dim=-1).to(x.device) self.cos_cached = emb.cos()[None,:, None, :] self.sin_cached = emb.sin()[None,:, None, :] return self.cos_cached, self.sin_cached def rotate_half(x): x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:] return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in earlier torch versions @torch.jit.script def apply_rotary_pos_emb(q, k, cos, sin): return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin) class RotateAttentionLayer(AttentionLayer): """Rotate attention layer inherits from fast_transformer attention layer. The only thing added is an Embedding encoding, for more information on the attention layer see the fast_transformers code """ def __init__(self, attention, d_model, n_heads, d_keys=None, d_values=None, event_dispatcher=""): super(RotateAttentionLayer, self).__init__(attention,d_model, n_heads, d_keys=d_keys, d_values=d_values, event_dispatcher=event_dispatcher) self.rotaryemb = RotaryEmbedding(d_keys) print('Using Rotation Embedding') def forward(self, queries, keys, values, attn_mask, query_lengths, key_lengths): """ Using the same frame work as the fast_Transformers attention layer but injecting rotary information to the queries and the keys after the keys and queries are projected. In the argument description we make use of the following sizes - N: the batch size - L: The maximum length of the queries - S: The maximum length of the keys (the actual length per sequence is given by the length mask) - D: The input feature dimensionality passed in the constructor as 'd_model' Arguments --------- queries: (N, L, D) The tensor containing the queries keys: (N, S, D) The tensor containing the keys values: (N, S, D) The tensor containing the values attn_mask: An implementation of BaseMask that encodes where each query can attend to query_lengths: An implementation of BaseMask that encodes how many queries each sequence in the batch consists of key_lengths: An implementation of BaseMask that encodes how many queries each sequence in the batch consists of Returns ------- The new value for each query as a tensor of shape (N, L, D). """ # Extract the dimensions into local variables N, L, _ = queries.shape _, S, _ = keys.shape H = self.n_heads # Project the queries/keys/values queries = self.query_projection(queries).view(N, L, H, -1) keys = self.key_projection(keys).view(N, S, H, -1) cos, sin = self.rotaryemb(queries) queries, keys = apply_rotary_pos_emb(queries, keys, cos, sin) values = self.value_projection(values).view(N, S, H, -1) # Let the world know of the qkv self.event_dispatcher.dispatch(QKVEvent(self, queries, keys, values)) # Compute the attention new_values = self.inner_attention( queries, keys, values, attn_mask, query_lengths, key_lengths ).view(N, L, -1) # Project the output and return return self.out_projection(new_values) class RotateEncoderBuilder(BaseTransformerEncoderBuilder): """Build a batch transformer encoder with Relative Rotary embeddings for training or processing of sequences all elements at a time. Example usage: builder = RotateEncoderBuilder() builder.n_layers = 12 builder.n_heads = 8 builder.feed_forward_dimensions = 1024 builder.query_dimensions = 64 builder.value_dimensions = 64 builder.dropout = 0.1 builder.attention_dropout = 0.1 builder.attention_type = "linear" transformer = builder.get() """ def _get_attention_builder(self): """Return an instance of the appropriate attention builder.""" return AttentionBuilder() def _get_attention_layer_class(self): """Return the class for the layer that projects queries keys and values.""" return RotateAttentionLayer def _get_encoder_class(self): """Return the class for the transformer encoder.""" return TransformerEncoder def _get_encoder_layer_class(self): """Return the class for the transformer encoder layer.""" return TransformerEncoderLayer class AutoEncoderLayer(nn.Module): def __init__(self, feature_size, latent_size): super().__init__() self.encoder = self.Encoder(feature_size, latent_size) self.decoder = self.Decoder(feature_size, latent_size) class Encoder(nn.Module): def __init__(self, feature_size, latent_size): super().__init__() self.is_cuda_available = torch.cuda.is_available() self.fc1 = nn.Linear(feature_size, latent_size) self.ln_f = nn.LayerNorm(latent_size) self.lat = nn.Linear(latent_size, latent_size, bias=False) def forward(self, x): if self.is_cuda_available: self.fc1.cuda() self.ln_f.cuda() self.lat.cuda() x = x.cuda() x = F.gelu(self.fc1(x)) x = self.ln_f(x) x = self.lat(x) return x # -> (N, D) class Decoder(nn.Module): def __init__(self, feature_size, latent_size): super().__init__() self.is_cuda_available = torch.cuda.is_available() self.fc1 = nn.Linear(latent_size, latent_size) self.ln_f = nn.LayerNorm(latent_size) self.rec = nn.Linear(latent_size, feature_size, bias=False) def forward(self, x): if self.is_cuda_available: self.fc1.cuda() self.ln_f.cuda() self.rec.cuda() x = x.cuda() x = F.gelu(self.fc1(x)) x = self.ln_f(x) x = self.rec(x) return x # -> (N, L*D) class LangLayer(nn.Module): def __init__(self, n_embd, n_vocab): super().__init__() self.is_cuda_available = torch.cuda.is_available() self.embed = nn.Linear(n_embd, n_embd) self.ln_f = nn.LayerNorm(n_embd) self.head = nn.Linear(n_embd, n_vocab, bias=False) def forward(self, tensor): if self.is_cuda_available: self.embed.cuda() self.ln_f.cuda() self.head.cuda() tensor = tensor.cuda() tensor = self.embed(tensor) tensor = F.gelu(tensor) tensor = self.ln_f(tensor) tensor = self.head(tensor) return tensor class MoLEncoder(nn.Module): def __init__(self, config, n_vocab): super(MoLEncoder, self).__init__() # embeddings self.tok_emb = nn.Embedding(n_vocab, config.n_embd) self.drop = nn.Dropout(config.d_dropout) # transformer builder = RotateEncoderBuilder.from_kwargs( n_layers=config.n_layer, n_heads=config.n_head, query_dimensions=config.n_embd//config.n_head, value_dimensions=config.n_embd//config.n_head, feed_forward_dimensions=None, attention_type='linear', # unless we do deterministic_eval here, we will have random outputs feature_map=partial(GeneralizedRandomFeatures, n_dims=config.num_feats, deterministic_eval=False), activation='gelu' ) self.blocks = builder.get() # classification self.lang_model = LangLayer(config.n_embd, n_vocab) def forward(self, idx, mask=None, inference=False): if not inference: x = self.tok_emb(idx) # each index maps to a (learnable) vector x = self.drop(x) #masking of the length of the inputs its handled in the Masked language part of the code #do not attempt to handle it in the forward of the transformer x = self.blocks(x) logits = self.lang_model(x) return logits else: x = self.tok_emb(idx) # each index maps to a (learnable) vector x = self.drop(x) #masking of the length of the inputs its handled in the Masked language part of the code #do not attempt to handle it in the forward of the transformer x = self.blocks(x, length_mask=LengthMask(mask.sum(-1), max_len=idx.shape[1])) # mean pooling token_embeddings = x input_mask_expanded = mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) true_set = sum_embeddings / sum_mask return true_set, token_embeddings class MoLDecoder(nn.Module): def __init__(self, n_vocab, max_len, n_embd, n_gpu=None): super(MoLDecoder, self).__init__() self.max_len = max_len self.n_embd = n_embd self.n_gpu = n_gpu self.autoencoder = AutoEncoderLayer(n_embd*max_len, n_embd) self.lang_model = LangLayer(n_embd, n_vocab) def forward(self, token_embeddings): pred_set = self.autoencoder.encoder(token_embeddings) # (N, D) pred_cte = self.autoencoder.decoder(pred_set) # (N, L*D) pred_ids = self.lang_model(pred_cte.view(-1, self.max_len, self.n_embd)) return pred_set, pred_ids class Smi_ted(nn.Module): """materials.smi-ted-Large 738M Parameters""" def __init__(self, config, vocab): super(Smi_ted, self).__init__() self.config = config self.padding_idx = 2 self.is_cuda_available = torch.cuda.is_available() n_vocab = len(vocab.keys()) print(n_vocab, config.n_embd) self.encoder = MoLEncoder(config, n_vocab) self.decoder = MoLDecoder(n_vocab, config.max_len, config.n_embd) self._set_seed(config.seed) print('Vocab size:', n_vocab) print(f'[PRE-TRAINING MODE - {str(self)}]') def _init_weights(self, module): if isinstance(module, (nn.Linear, nn.Embedding)): module.weight.data.normal_(mean=0.0, std=0.02) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_seed(self, value): print('Random Seed:', value) random.seed(value) torch.manual_seed(value) torch.cuda.manual_seed(value) torch.cuda.manual_seed_all(value) np.random.seed(value) cudnn.deterministic = True cudnn.benchmark = False def __str__(self): return 'smi-ted-Large'