ibnummuhammad commited on
Commit
78b0507
1 Parent(s): a39f8ea
Files changed (1) hide show
  1. coal-price-forecast.ipynb +1377 -155
coal-price-forecast.ipynb CHANGED
@@ -37,7 +37,7 @@
37
  " csv_file = csv_file.split(\".\")[0]\n",
38
  " df[csv_file] = pd.read_csv(f\"../coal-price-data/fred/{csv_file}.csv\")\n",
39
  " df[csv_file][\"datetime\"] = pd.to_datetime(df[csv_file][csv_date], format=\"%Y-%m-%d\")\n",
40
- " df_m2_filtered = df[csv_file].loc[\n",
41
  " (df[csv_file][\"datetime\"] >= csv_date_start) & (df[csv_file][\"datetime\"] < csv_date_end)\n",
42
  " ]"
43
  ]
@@ -75,34 +75,34 @@
75
  " </thead>\n",
76
  " <tbody>\n",
77
  " <tr>\n",
78
- " <th>0</th>\n",
79
- " <td>1959-01-01</td>\n",
80
- " <td>286.6</td>\n",
81
- " <td>1959-01-01</td>\n",
82
  " </tr>\n",
83
  " <tr>\n",
84
- " <th>1</th>\n",
85
- " <td>1959-02-01</td>\n",
86
- " <td>287.7</td>\n",
87
- " <td>1959-02-01</td>\n",
88
  " </tr>\n",
89
  " <tr>\n",
90
- " <th>2</th>\n",
91
- " <td>1959-03-01</td>\n",
92
- " <td>289.2</td>\n",
93
- " <td>1959-03-01</td>\n",
94
  " </tr>\n",
95
  " <tr>\n",
96
- " <th>3</th>\n",
97
- " <td>1959-04-01</td>\n",
98
- " <td>290.1</td>\n",
99
- " <td>1959-04-01</td>\n",
100
  " </tr>\n",
101
  " <tr>\n",
102
- " <th>4</th>\n",
103
- " <td>1959-05-01</td>\n",
104
- " <td>292.2</td>\n",
105
- " <td>1959-05-01</td>\n",
106
  " </tr>\n",
107
  " <tr>\n",
108
  " <th>...</th>\n",
@@ -111,6 +111,12 @@
111
  " <td>...</td>\n",
112
  " </tr>\n",
113
  " <tr>\n",
 
 
 
 
 
 
114
  " <th>775</th>\n",
115
  " <td>2023-08-01</td>\n",
116
  " <td>20825.6</td>\n",
@@ -134,32 +140,26 @@
134
  " <td>20767.5</td>\n",
135
  " <td>2023-11-01</td>\n",
136
  " </tr>\n",
137
- " <tr>\n",
138
- " <th>779</th>\n",
139
- " <td>2023-12-01</td>\n",
140
- " <td>20865.2</td>\n",
141
- " <td>2023-12-01</td>\n",
142
- " </tr>\n",
143
  " </tbody>\n",
144
  "</table>\n",
145
- "<p>780 rows × 3 columns</p>\n",
146
  "</div>"
147
  ],
148
  "text/plain": [
149
  " DATE M2SL datetime\n",
150
- "0 1959-01-01 286.6 1959-01-01\n",
151
- "1 1959-02-01 287.7 1959-02-01\n",
152
- "2 1959-03-01 289.2 1959-03-01\n",
153
- "3 1959-04-01 290.1 1959-04-01\n",
154
- "4 1959-05-01 292.2 1959-05-01\n",
155
  ".. ... ... ...\n",
 
156
  "775 2023-08-01 20825.6 2023-08-01\n",
157
  "776 2023-09-01 20755.4 2023-09-01\n",
158
  "777 2023-10-01 20725.7 2023-10-01\n",
159
  "778 2023-11-01 20767.5 2023-11-01\n",
160
- "779 2023-12-01 20865.2 2023-12-01\n",
161
  "\n",
162
- "[780 rows x 3 columns]"
163
  ]
164
  },
165
  "execution_count": 3,
@@ -173,7 +173,7 @@
173
  },
174
  {
175
  "cell_type": "code",
176
- "execution_count": 5,
177
  "metadata": {},
178
  "outputs": [
179
  {
@@ -194,13 +194,13 @@
194
  "ICI_1 277.62\n",
195
  "datetime 2023-12-01 00:00:00\n",
196
  "dtype: object\n",
197
- "DATE 1959-01-01\n",
198
- "M2SL 286.6\n",
199
- "datetime 1959-01-01 00:00:00\n",
200
  "dtype: object\n",
201
- "DATE 2023-12-01\n",
202
  "M2SL 21703.5\n",
203
- "datetime 2023-12-01 00:00:00\n",
204
  "dtype: object\n"
205
  ]
206
  }
@@ -214,7 +214,7 @@
214
  },
215
  {
216
  "cell_type": "code",
217
- "execution_count": 6,
218
  "metadata": {},
219
  "outputs": [
220
  {
@@ -1455,120 +1455,1342 @@
1455
  },
1456
  {
1457
  "cell_type": "code",
1458
- "execution_count": null,
1459
- "metadata": {},
1460
- "outputs": [],
1461
- "source": [
1462
- "y = \"M2SL\"\n",
1463
- "fig = px.line(df_m2_filtered, x=\"datetime\", y=y, labels={\"Month\": \"Date\"})\n",
1464
- "fig.update_layout(\n",
1465
- " template=\"simple_white\",\n",
1466
- " font=dict(size=18),\n",
1467
- " title_text=y,\n",
1468
- " width=650,\n",
1469
- " title_x=0.5,\n",
1470
- " height=400,\n",
1471
- ")\n",
1472
- "fig.show()"
1473
- ]
1474
- },
1475
- {
1476
- "cell_type": "code",
1477
- "execution_count": null,
1478
- "metadata": {},
1479
- "outputs": [],
1480
- "source": []
1481
- },
1482
- {
1483
- "cell_type": "code",
1484
- "execution_count": null,
1485
- "metadata": {},
1486
- "outputs": [],
1487
- "source": [
1488
- "df_coal"
1489
- ]
1490
- },
1491
- {
1492
- "cell_type": "code",
1493
- "execution_count": null,
1494
- "metadata": {},
1495
- "outputs": [],
1496
- "source": [
1497
- "df_m2_filtered"
1498
- ]
1499
- },
1500
- {
1501
- "cell_type": "code",
1502
- "execution_count": null,
1503
- "metadata": {},
1504
- "outputs": [],
1505
- "source": [
1506
- "print(len(df_coal.newcastle))\n",
1507
- "print(len(df_m2_filtered[\"M2SL\"]))"
1508
- ]
1509
- },
1510
- {
1511
- "cell_type": "code",
1512
- "execution_count": null,
1513
- "metadata": {},
1514
- "outputs": [],
1515
- "source": []
1516
- },
1517
- {
1518
- "cell_type": "code",
1519
- "execution_count": null,
1520
- "metadata": {},
1521
- "outputs": [],
1522
- "source": [
1523
- "x = df_coal.newcastle\n",
1524
- "y = df_coal.ICI_1\n",
1525
- "\n",
1526
- "slope, intercept, r, p, std_err = stats.linregress(x, y)"
1527
- ]
1528
- },
1529
- {
1530
- "cell_type": "code",
1531
- "execution_count": null,
1532
- "metadata": {},
1533
- "outputs": [],
1534
- "source": [
1535
- "print(f\"slope: {slope}\")\n",
1536
- "print(f\"intercept: {intercept}\")\n",
1537
- "print(f\"r: {r}\")\n",
1538
- "print(f\"p: {p}\")\n",
1539
- "print(f\"std_err: {std_err}\")"
1540
- ]
1541
- },
1542
- {
1543
- "cell_type": "code",
1544
- "execution_count": null,
1545
- "metadata": {},
1546
- "outputs": [],
1547
- "source": [
1548
- "x = df_coal.newcastle\n",
1549
- "y = df_m2_filtered[\"M2SL\"]\n",
1550
- "\n",
1551
- "slope, intercept, r, p, std_err = stats.linregress(x, y)"
1552
- ]
1553
- },
1554
- {
1555
- "cell_type": "code",
1556
- "execution_count": null,
1557
- "metadata": {},
1558
- "outputs": [],
1559
- "source": [
1560
- "print(f\"slope: {slope}\")\n",
1561
- "print(f\"intercept: {intercept}\")\n",
1562
- "print(f\"r: {r}\")\n",
1563
- "print(f\"p: {p}\")\n",
1564
- "print(f\"std_err: {std_err}\")"
1565
- ]
1566
- },
1567
- {
1568
- "cell_type": "code",
1569
- "execution_count": null,
1570
  "metadata": {},
1571
- "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1572
  "source": [
1573
  "def myfunc(x):\n",
1574
  " return slope * x + intercept\n",
 
37
  " csv_file = csv_file.split(\".\")[0]\n",
38
  " df[csv_file] = pd.read_csv(f\"../coal-price-data/fred/{csv_file}.csv\")\n",
39
  " df[csv_file][\"datetime\"] = pd.to_datetime(df[csv_file][csv_date], format=\"%Y-%m-%d\")\n",
40
+ " df[csv_file] = df[csv_file].loc[\n",
41
  " (df[csv_file][\"datetime\"] >= csv_date_start) & (df[csv_file][\"datetime\"] < csv_date_end)\n",
42
  " ]"
43
  ]
 
75
  " </thead>\n",
76
  " <tbody>\n",
77
  " <tr>\n",
78
+ " <th>634</th>\n",
79
+ " <td>2011-11-01</td>\n",
80
+ " <td>9612.6</td>\n",
81
+ " <td>2011-11-01</td>\n",
82
  " </tr>\n",
83
  " <tr>\n",
84
+ " <th>635</th>\n",
85
+ " <td>2011-12-01</td>\n",
86
+ " <td>9660.1</td>\n",
87
+ " <td>2011-12-01</td>\n",
88
  " </tr>\n",
89
  " <tr>\n",
90
+ " <th>636</th>\n",
91
+ " <td>2012-01-01</td>\n",
92
+ " <td>9733.3</td>\n",
93
+ " <td>2012-01-01</td>\n",
94
  " </tr>\n",
95
  " <tr>\n",
96
+ " <th>637</th>\n",
97
+ " <td>2012-02-01</td>\n",
98
+ " <td>9785.7</td>\n",
99
+ " <td>2012-02-01</td>\n",
100
  " </tr>\n",
101
  " <tr>\n",
102
+ " <th>638</th>\n",
103
+ " <td>2012-03-01</td>\n",
104
+ " <td>9830.6</td>\n",
105
+ " <td>2012-03-01</td>\n",
106
  " </tr>\n",
107
  " <tr>\n",
108
  " <th>...</th>\n",
 
111
  " <td>...</td>\n",
112
  " </tr>\n",
113
  " <tr>\n",
114
+ " <th>774</th>\n",
115
+ " <td>2023-07-01</td>\n",
116
+ " <td>20863.8</td>\n",
117
+ " <td>2023-07-01</td>\n",
118
+ " </tr>\n",
119
+ " <tr>\n",
120
  " <th>775</th>\n",
121
  " <td>2023-08-01</td>\n",
122
  " <td>20825.6</td>\n",
 
140
  " <td>20767.5</td>\n",
141
  " <td>2023-11-01</td>\n",
142
  " </tr>\n",
 
 
 
 
 
 
143
  " </tbody>\n",
144
  "</table>\n",
145
+ "<p>145 rows × 3 columns</p>\n",
146
  "</div>"
147
  ],
148
  "text/plain": [
149
  " DATE M2SL datetime\n",
150
+ "634 2011-11-01 9612.6 2011-11-01\n",
151
+ "635 2011-12-01 9660.1 2011-12-01\n",
152
+ "636 2012-01-01 9733.3 2012-01-01\n",
153
+ "637 2012-02-01 9785.7 2012-02-01\n",
154
+ "638 2012-03-01 9830.6 2012-03-01\n",
155
  ".. ... ... ...\n",
156
+ "774 2023-07-01 20863.8 2023-07-01\n",
157
  "775 2023-08-01 20825.6 2023-08-01\n",
158
  "776 2023-09-01 20755.4 2023-09-01\n",
159
  "777 2023-10-01 20725.7 2023-10-01\n",
160
  "778 2023-11-01 20767.5 2023-11-01\n",
 
161
  "\n",
162
+ "[145 rows x 3 columns]"
163
  ]
164
  },
165
  "execution_count": 3,
 
173
  },
174
  {
175
  "cell_type": "code",
176
+ "execution_count": 4,
177
  "metadata": {},
178
  "outputs": [
179
  {
 
194
  "ICI_1 277.62\n",
195
  "datetime 2023-12-01 00:00:00\n",
196
  "dtype: object\n",
197
+ "DATE 2011-11-01\n",
198
+ "M2SL 9612.6\n",
199
+ "datetime 2011-11-01 00:00:00\n",
200
  "dtype: object\n",
201
+ "DATE 2023-11-01\n",
202
  "M2SL 21703.5\n",
203
+ "datetime 2023-11-01 00:00:00\n",
204
  "dtype: object\n"
205
  ]
206
  }
 
214
  },
215
  {
216
  "cell_type": "code",
217
+ "execution_count": 5,
218
  "metadata": {},
219
  "outputs": [
220
  {
 
1455
  },
1456
  {
1457
  "cell_type": "code",
1458
+ "execution_count": 6,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1459
  "metadata": {},
1460
+ "outputs": [
1461
+ {
1462
+ "data": {
1463
+ "application/vnd.plotly.v1+json": {
1464
+ "config": {
1465
+ "plotlyServerURL": "https://plot.ly"
1466
+ },
1467
+ "data": [
1468
+ {
1469
+ "hovertemplate": "datetime=%{x}<br>M2SL=%{y}<extra></extra>",
1470
+ "legendgroup": "",
1471
+ "line": {
1472
+ "color": "#636efa",
1473
+ "dash": "solid"
1474
+ },
1475
+ "marker": {
1476
+ "symbol": "circle"
1477
+ },
1478
+ "mode": "lines",
1479
+ "name": "",
1480
+ "orientation": "v",
1481
+ "showlegend": false,
1482
+ "type": "scatter",
1483
+ "x": [
1484
+ "2011-11-01T00:00:00",
1485
+ "2011-12-01T00:00:00",
1486
+ "2012-01-01T00:00:00",
1487
+ "2012-02-01T00:00:00",
1488
+ "2012-03-01T00:00:00",
1489
+ "2012-04-01T00:00:00",
1490
+ "2012-05-01T00:00:00",
1491
+ "2012-06-01T00:00:00",
1492
+ "2012-07-01T00:00:00",
1493
+ "2012-08-01T00:00:00",
1494
+ "2012-09-01T00:00:00",
1495
+ "2012-10-01T00:00:00",
1496
+ "2012-11-01T00:00:00",
1497
+ "2012-12-01T00:00:00",
1498
+ "2013-01-01T00:00:00",
1499
+ "2013-02-01T00:00:00",
1500
+ "2013-03-01T00:00:00",
1501
+ "2013-04-01T00:00:00",
1502
+ "2013-05-01T00:00:00",
1503
+ "2013-06-01T00:00:00",
1504
+ "2013-07-01T00:00:00",
1505
+ "2013-08-01T00:00:00",
1506
+ "2013-09-01T00:00:00",
1507
+ "2013-10-01T00:00:00",
1508
+ "2013-11-01T00:00:00",
1509
+ "2013-12-01T00:00:00",
1510
+ "2014-01-01T00:00:00",
1511
+ "2014-02-01T00:00:00",
1512
+ "2014-03-01T00:00:00",
1513
+ "2014-04-01T00:00:00",
1514
+ "2014-05-01T00:00:00",
1515
+ "2014-06-01T00:00:00",
1516
+ "2014-07-01T00:00:00",
1517
+ "2014-08-01T00:00:00",
1518
+ "2014-09-01T00:00:00",
1519
+ "2014-10-01T00:00:00",
1520
+ "2014-11-01T00:00:00",
1521
+ "2014-12-01T00:00:00",
1522
+ "2015-01-01T00:00:00",
1523
+ "2015-02-01T00:00:00",
1524
+ "2015-03-01T00:00:00",
1525
+ "2015-04-01T00:00:00",
1526
+ "2015-05-01T00:00:00",
1527
+ "2015-06-01T00:00:00",
1528
+ "2015-07-01T00:00:00",
1529
+ "2015-08-01T00:00:00",
1530
+ "2015-09-01T00:00:00",
1531
+ "2015-10-01T00:00:00",
1532
+ "2015-11-01T00:00:00",
1533
+ "2015-12-01T00:00:00",
1534
+ "2016-01-01T00:00:00",
1535
+ "2016-02-01T00:00:00",
1536
+ "2016-03-01T00:00:00",
1537
+ "2016-04-01T00:00:00",
1538
+ "2016-05-01T00:00:00",
1539
+ "2016-06-01T00:00:00",
1540
+ "2016-07-01T00:00:00",
1541
+ "2016-08-01T00:00:00",
1542
+ "2016-09-01T00:00:00",
1543
+ "2016-10-01T00:00:00",
1544
+ "2016-11-01T00:00:00",
1545
+ "2016-12-01T00:00:00",
1546
+ "2017-01-01T00:00:00",
1547
+ "2017-02-01T00:00:00",
1548
+ "2017-03-01T00:00:00",
1549
+ "2017-04-01T00:00:00",
1550
+ "2017-05-01T00:00:00",
1551
+ "2017-06-01T00:00:00",
1552
+ "2017-07-01T00:00:00",
1553
+ "2017-08-01T00:00:00",
1554
+ "2017-09-01T00:00:00",
1555
+ "2017-10-01T00:00:00",
1556
+ "2017-11-01T00:00:00",
1557
+ "2017-12-01T00:00:00",
1558
+ "2018-01-01T00:00:00",
1559
+ "2018-02-01T00:00:00",
1560
+ "2018-03-01T00:00:00",
1561
+ "2018-04-01T00:00:00",
1562
+ "2018-05-01T00:00:00",
1563
+ "2018-06-01T00:00:00",
1564
+ "2018-07-01T00:00:00",
1565
+ "2018-08-01T00:00:00",
1566
+ "2018-09-01T00:00:00",
1567
+ "2018-10-01T00:00:00",
1568
+ "2018-11-01T00:00:00",
1569
+ "2018-12-01T00:00:00",
1570
+ "2019-01-01T00:00:00",
1571
+ "2019-02-01T00:00:00",
1572
+ "2019-03-01T00:00:00",
1573
+ "2019-04-01T00:00:00",
1574
+ "2019-05-01T00:00:00",
1575
+ "2019-06-01T00:00:00",
1576
+ "2019-07-01T00:00:00",
1577
+ "2019-08-01T00:00:00",
1578
+ "2019-09-01T00:00:00",
1579
+ "2019-10-01T00:00:00",
1580
+ "2019-11-01T00:00:00",
1581
+ "2019-12-01T00:00:00",
1582
+ "2020-01-01T00:00:00",
1583
+ "2020-02-01T00:00:00",
1584
+ "2020-03-01T00:00:00",
1585
+ "2020-04-01T00:00:00",
1586
+ "2020-05-01T00:00:00",
1587
+ "2020-06-01T00:00:00",
1588
+ "2020-07-01T00:00:00",
1589
+ "2020-08-01T00:00:00",
1590
+ "2020-09-01T00:00:00",
1591
+ "2020-10-01T00:00:00",
1592
+ "2020-11-01T00:00:00",
1593
+ "2020-12-01T00:00:00",
1594
+ "2021-01-01T00:00:00",
1595
+ "2021-02-01T00:00:00",
1596
+ "2021-03-01T00:00:00",
1597
+ "2021-04-01T00:00:00",
1598
+ "2021-05-01T00:00:00",
1599
+ "2021-06-01T00:00:00",
1600
+ "2021-07-01T00:00:00",
1601
+ "2021-08-01T00:00:00",
1602
+ "2021-09-01T00:00:00",
1603
+ "2021-10-01T00:00:00",
1604
+ "2021-11-01T00:00:00",
1605
+ "2021-12-01T00:00:00",
1606
+ "2022-01-01T00:00:00",
1607
+ "2022-02-01T00:00:00",
1608
+ "2022-03-01T00:00:00",
1609
+ "2022-04-01T00:00:00",
1610
+ "2022-05-01T00:00:00",
1611
+ "2022-06-01T00:00:00",
1612
+ "2022-07-01T00:00:00",
1613
+ "2022-08-01T00:00:00",
1614
+ "2022-09-01T00:00:00",
1615
+ "2022-10-01T00:00:00",
1616
+ "2022-11-01T00:00:00",
1617
+ "2022-12-01T00:00:00",
1618
+ "2023-01-01T00:00:00",
1619
+ "2023-02-01T00:00:00",
1620
+ "2023-03-01T00:00:00",
1621
+ "2023-04-01T00:00:00",
1622
+ "2023-05-01T00:00:00",
1623
+ "2023-06-01T00:00:00",
1624
+ "2023-07-01T00:00:00",
1625
+ "2023-08-01T00:00:00",
1626
+ "2023-09-01T00:00:00",
1627
+ "2023-10-01T00:00:00",
1628
+ "2023-11-01T00:00:00"
1629
+ ],
1630
+ "xaxis": "x",
1631
+ "y": [
1632
+ 9612.6,
1633
+ 9660.1,
1634
+ 9733.3,
1635
+ 9785.7,
1636
+ 9830.6,
1637
+ 9884.6,
1638
+ 9928.4,
1639
+ 9999.3,
1640
+ 10051.8,
1641
+ 10121.3,
1642
+ 10200.8,
1643
+ 10267.3,
1644
+ 10337.6,
1645
+ 10459.7,
1646
+ 10482.9,
1647
+ 10501.3,
1648
+ 10558.3,
1649
+ 10586.3,
1650
+ 10621,
1651
+ 10678.7,
1652
+ 10718.4,
1653
+ 10776.6,
1654
+ 10837.2,
1655
+ 10961.6,
1656
+ 10969.7,
1657
+ 11035,
1658
+ 11080.8,
1659
+ 11178.8,
1660
+ 11208.1,
1661
+ 11257.7,
1662
+ 11321,
1663
+ 11374.9,
1664
+ 11429.9,
1665
+ 11458.9,
1666
+ 11499.8,
1667
+ 11566,
1668
+ 11604.8,
1669
+ 11684.9,
1670
+ 11745.6,
1671
+ 11879,
1672
+ 11886.8,
1673
+ 11928.9,
1674
+ 11957.9,
1675
+ 12001.7,
1676
+ 12051.3,
1677
+ 12101.9,
1678
+ 12160.8,
1679
+ 12195.9,
1680
+ 12284.6,
1681
+ 12346.8,
1682
+ 12469.9,
1683
+ 12556.7,
1684
+ 12616.7,
1685
+ 12700.4,
1686
+ 12766.2,
1687
+ 12829.4,
1688
+ 12887.7,
1689
+ 12972.8,
1690
+ 13033.6,
1691
+ 13100.5,
1692
+ 13173.4,
1693
+ 13213.4,
1694
+ 13283.4,
1695
+ 13358.8,
1696
+ 13426.9,
1697
+ 13484.9,
1698
+ 13538.1,
1699
+ 13559.2,
1700
+ 13618.7,
1701
+ 13673.7,
1702
+ 13717.9,
1703
+ 13770.1,
1704
+ 13799.9,
1705
+ 13857.9,
1706
+ 13869.7,
1707
+ 13912.3,
1708
+ 13970.2,
1709
+ 13988.8,
1710
+ 14047.2,
1711
+ 14103.6,
1712
+ 14139.2,
1713
+ 14181.3,
1714
+ 14212.9,
1715
+ 14222.5,
1716
+ 14236.8,
1717
+ 14362.7,
1718
+ 14430,
1719
+ 14469.9,
1720
+ 14509.9,
1721
+ 14541,
1722
+ 14643.2,
1723
+ 14757.7,
1724
+ 14840.6,
1725
+ 14914.6,
1726
+ 15008.1,
1727
+ 15140.8,
1728
+ 15242.2,
1729
+ 15320.7,
1730
+ 15396,
1731
+ 15450.3,
1732
+ 15978.7,
1733
+ 16997.6,
1734
+ 17851.1,
1735
+ 18131.7,
1736
+ 18286.3,
1737
+ 18346,
1738
+ 18577.3,
1739
+ 18729.1,
1740
+ 18949.3,
1741
+ 19114.6,
1742
+ 19357.5,
1743
+ 19600.6,
1744
+ 19840.8,
1745
+ 20116.8,
1746
+ 20431.1,
1747
+ 20506.7,
1748
+ 20663.1,
1749
+ 20847.8,
1750
+ 20964.3,
1751
+ 21115.6,
1752
+ 21315.7,
1753
+ 21549.3,
1754
+ 21562.3,
1755
+ 21570.7,
1756
+ 21697.8,
1757
+ 21677.2,
1758
+ 21665.5,
1759
+ 21666.1,
1760
+ 21703.5,
1761
+ 21659.6,
1762
+ 21525.1,
1763
+ 21433.2,
1764
+ 21399.3,
1765
+ 21358.3,
1766
+ 21221.7,
1767
+ 21099.8,
1768
+ 20876,
1769
+ 20705.4,
1770
+ 20820.8,
1771
+ 20854.5,
1772
+ 20863.8,
1773
+ 20825.6,
1774
+ 20755.4,
1775
+ 20725.7,
1776
+ 20767.5
1777
+ ],
1778
+ "yaxis": "y"
1779
+ }
1780
+ ],
1781
+ "layout": {
1782
+ "font": {
1783
+ "size": 18
1784
+ },
1785
+ "height": 400,
1786
+ "legend": {
1787
+ "tracegroupgap": 0
1788
+ },
1789
+ "margin": {
1790
+ "t": 60
1791
+ },
1792
+ "template": {
1793
+ "data": {
1794
+ "bar": [
1795
+ {
1796
+ "error_x": {
1797
+ "color": "rgb(36,36,36)"
1798
+ },
1799
+ "error_y": {
1800
+ "color": "rgb(36,36,36)"
1801
+ },
1802
+ "marker": {
1803
+ "line": {
1804
+ "color": "white",
1805
+ "width": 0.5
1806
+ },
1807
+ "pattern": {
1808
+ "fillmode": "overlay",
1809
+ "size": 10,
1810
+ "solidity": 0.2
1811
+ }
1812
+ },
1813
+ "type": "bar"
1814
+ }
1815
+ ],
1816
+ "barpolar": [
1817
+ {
1818
+ "marker": {
1819
+ "line": {
1820
+ "color": "white",
1821
+ "width": 0.5
1822
+ },
1823
+ "pattern": {
1824
+ "fillmode": "overlay",
1825
+ "size": 10,
1826
+ "solidity": 0.2
1827
+ }
1828
+ },
1829
+ "type": "barpolar"
1830
+ }
1831
+ ],
1832
+ "carpet": [
1833
+ {
1834
+ "aaxis": {
1835
+ "endlinecolor": "rgb(36,36,36)",
1836
+ "gridcolor": "white",
1837
+ "linecolor": "white",
1838
+ "minorgridcolor": "white",
1839
+ "startlinecolor": "rgb(36,36,36)"
1840
+ },
1841
+ "baxis": {
1842
+ "endlinecolor": "rgb(36,36,36)",
1843
+ "gridcolor": "white",
1844
+ "linecolor": "white",
1845
+ "minorgridcolor": "white",
1846
+ "startlinecolor": "rgb(36,36,36)"
1847
+ },
1848
+ "type": "carpet"
1849
+ }
1850
+ ],
1851
+ "choropleth": [
1852
+ {
1853
+ "colorbar": {
1854
+ "outlinewidth": 1,
1855
+ "tickcolor": "rgb(36,36,36)",
1856
+ "ticks": "outside"
1857
+ },
1858
+ "type": "choropleth"
1859
+ }
1860
+ ],
1861
+ "contour": [
1862
+ {
1863
+ "colorbar": {
1864
+ "outlinewidth": 1,
1865
+ "tickcolor": "rgb(36,36,36)",
1866
+ "ticks": "outside"
1867
+ },
1868
+ "colorscale": [
1869
+ [
1870
+ 0,
1871
+ "#440154"
1872
+ ],
1873
+ [
1874
+ 0.1111111111111111,
1875
+ "#482878"
1876
+ ],
1877
+ [
1878
+ 0.2222222222222222,
1879
+ "#3e4989"
1880
+ ],
1881
+ [
1882
+ 0.3333333333333333,
1883
+ "#31688e"
1884
+ ],
1885
+ [
1886
+ 0.4444444444444444,
1887
+ "#26828e"
1888
+ ],
1889
+ [
1890
+ 0.5555555555555556,
1891
+ "#1f9e89"
1892
+ ],
1893
+ [
1894
+ 0.6666666666666666,
1895
+ "#35b779"
1896
+ ],
1897
+ [
1898
+ 0.7777777777777778,
1899
+ "#6ece58"
1900
+ ],
1901
+ [
1902
+ 0.8888888888888888,
1903
+ "#b5de2b"
1904
+ ],
1905
+ [
1906
+ 1,
1907
+ "#fde725"
1908
+ ]
1909
+ ],
1910
+ "type": "contour"
1911
+ }
1912
+ ],
1913
+ "contourcarpet": [
1914
+ {
1915
+ "colorbar": {
1916
+ "outlinewidth": 1,
1917
+ "tickcolor": "rgb(36,36,36)",
1918
+ "ticks": "outside"
1919
+ },
1920
+ "type": "contourcarpet"
1921
+ }
1922
+ ],
1923
+ "heatmap": [
1924
+ {
1925
+ "colorbar": {
1926
+ "outlinewidth": 1,
1927
+ "tickcolor": "rgb(36,36,36)",
1928
+ "ticks": "outside"
1929
+ },
1930
+ "colorscale": [
1931
+ [
1932
+ 0,
1933
+ "#440154"
1934
+ ],
1935
+ [
1936
+ 0.1111111111111111,
1937
+ "#482878"
1938
+ ],
1939
+ [
1940
+ 0.2222222222222222,
1941
+ "#3e4989"
1942
+ ],
1943
+ [
1944
+ 0.3333333333333333,
1945
+ "#31688e"
1946
+ ],
1947
+ [
1948
+ 0.4444444444444444,
1949
+ "#26828e"
1950
+ ],
1951
+ [
1952
+ 0.5555555555555556,
1953
+ "#1f9e89"
1954
+ ],
1955
+ [
1956
+ 0.6666666666666666,
1957
+ "#35b779"
1958
+ ],
1959
+ [
1960
+ 0.7777777777777778,
1961
+ "#6ece58"
1962
+ ],
1963
+ [
1964
+ 0.8888888888888888,
1965
+ "#b5de2b"
1966
+ ],
1967
+ [
1968
+ 1,
1969
+ "#fde725"
1970
+ ]
1971
+ ],
1972
+ "type": "heatmap"
1973
+ }
1974
+ ],
1975
+ "heatmapgl": [
1976
+ {
1977
+ "colorbar": {
1978
+ "outlinewidth": 1,
1979
+ "tickcolor": "rgb(36,36,36)",
1980
+ "ticks": "outside"
1981
+ },
1982
+ "colorscale": [
1983
+ [
1984
+ 0,
1985
+ "#440154"
1986
+ ],
1987
+ [
1988
+ 0.1111111111111111,
1989
+ "#482878"
1990
+ ],
1991
+ [
1992
+ 0.2222222222222222,
1993
+ "#3e4989"
1994
+ ],
1995
+ [
1996
+ 0.3333333333333333,
1997
+ "#31688e"
1998
+ ],
1999
+ [
2000
+ 0.4444444444444444,
2001
+ "#26828e"
2002
+ ],
2003
+ [
2004
+ 0.5555555555555556,
2005
+ "#1f9e89"
2006
+ ],
2007
+ [
2008
+ 0.6666666666666666,
2009
+ "#35b779"
2010
+ ],
2011
+ [
2012
+ 0.7777777777777778,
2013
+ "#6ece58"
2014
+ ],
2015
+ [
2016
+ 0.8888888888888888,
2017
+ "#b5de2b"
2018
+ ],
2019
+ [
2020
+ 1,
2021
+ "#fde725"
2022
+ ]
2023
+ ],
2024
+ "type": "heatmapgl"
2025
+ }
2026
+ ],
2027
+ "histogram": [
2028
+ {
2029
+ "marker": {
2030
+ "line": {
2031
+ "color": "white",
2032
+ "width": 0.6
2033
+ }
2034
+ },
2035
+ "type": "histogram"
2036
+ }
2037
+ ],
2038
+ "histogram2d": [
2039
+ {
2040
+ "colorbar": {
2041
+ "outlinewidth": 1,
2042
+ "tickcolor": "rgb(36,36,36)",
2043
+ "ticks": "outside"
2044
+ },
2045
+ "colorscale": [
2046
+ [
2047
+ 0,
2048
+ "#440154"
2049
+ ],
2050
+ [
2051
+ 0.1111111111111111,
2052
+ "#482878"
2053
+ ],
2054
+ [
2055
+ 0.2222222222222222,
2056
+ "#3e4989"
2057
+ ],
2058
+ [
2059
+ 0.3333333333333333,
2060
+ "#31688e"
2061
+ ],
2062
+ [
2063
+ 0.4444444444444444,
2064
+ "#26828e"
2065
+ ],
2066
+ [
2067
+ 0.5555555555555556,
2068
+ "#1f9e89"
2069
+ ],
2070
+ [
2071
+ 0.6666666666666666,
2072
+ "#35b779"
2073
+ ],
2074
+ [
2075
+ 0.7777777777777778,
2076
+ "#6ece58"
2077
+ ],
2078
+ [
2079
+ 0.8888888888888888,
2080
+ "#b5de2b"
2081
+ ],
2082
+ [
2083
+ 1,
2084
+ "#fde725"
2085
+ ]
2086
+ ],
2087
+ "type": "histogram2d"
2088
+ }
2089
+ ],
2090
+ "histogram2dcontour": [
2091
+ {
2092
+ "colorbar": {
2093
+ "outlinewidth": 1,
2094
+ "tickcolor": "rgb(36,36,36)",
2095
+ "ticks": "outside"
2096
+ },
2097
+ "colorscale": [
2098
+ [
2099
+ 0,
2100
+ "#440154"
2101
+ ],
2102
+ [
2103
+ 0.1111111111111111,
2104
+ "#482878"
2105
+ ],
2106
+ [
2107
+ 0.2222222222222222,
2108
+ "#3e4989"
2109
+ ],
2110
+ [
2111
+ 0.3333333333333333,
2112
+ "#31688e"
2113
+ ],
2114
+ [
2115
+ 0.4444444444444444,
2116
+ "#26828e"
2117
+ ],
2118
+ [
2119
+ 0.5555555555555556,
2120
+ "#1f9e89"
2121
+ ],
2122
+ [
2123
+ 0.6666666666666666,
2124
+ "#35b779"
2125
+ ],
2126
+ [
2127
+ 0.7777777777777778,
2128
+ "#6ece58"
2129
+ ],
2130
+ [
2131
+ 0.8888888888888888,
2132
+ "#b5de2b"
2133
+ ],
2134
+ [
2135
+ 1,
2136
+ "#fde725"
2137
+ ]
2138
+ ],
2139
+ "type": "histogram2dcontour"
2140
+ }
2141
+ ],
2142
+ "mesh3d": [
2143
+ {
2144
+ "colorbar": {
2145
+ "outlinewidth": 1,
2146
+ "tickcolor": "rgb(36,36,36)",
2147
+ "ticks": "outside"
2148
+ },
2149
+ "type": "mesh3d"
2150
+ }
2151
+ ],
2152
+ "parcoords": [
2153
+ {
2154
+ "line": {
2155
+ "colorbar": {
2156
+ "outlinewidth": 1,
2157
+ "tickcolor": "rgb(36,36,36)",
2158
+ "ticks": "outside"
2159
+ }
2160
+ },
2161
+ "type": "parcoords"
2162
+ }
2163
+ ],
2164
+ "pie": [
2165
+ {
2166
+ "automargin": true,
2167
+ "type": "pie"
2168
+ }
2169
+ ],
2170
+ "scatter": [
2171
+ {
2172
+ "fillpattern": {
2173
+ "fillmode": "overlay",
2174
+ "size": 10,
2175
+ "solidity": 0.2
2176
+ },
2177
+ "type": "scatter"
2178
+ }
2179
+ ],
2180
+ "scatter3d": [
2181
+ {
2182
+ "line": {
2183
+ "colorbar": {
2184
+ "outlinewidth": 1,
2185
+ "tickcolor": "rgb(36,36,36)",
2186
+ "ticks": "outside"
2187
+ }
2188
+ },
2189
+ "marker": {
2190
+ "colorbar": {
2191
+ "outlinewidth": 1,
2192
+ "tickcolor": "rgb(36,36,36)",
2193
+ "ticks": "outside"
2194
+ }
2195
+ },
2196
+ "type": "scatter3d"
2197
+ }
2198
+ ],
2199
+ "scattercarpet": [
2200
+ {
2201
+ "marker": {
2202
+ "colorbar": {
2203
+ "outlinewidth": 1,
2204
+ "tickcolor": "rgb(36,36,36)",
2205
+ "ticks": "outside"
2206
+ }
2207
+ },
2208
+ "type": "scattercarpet"
2209
+ }
2210
+ ],
2211
+ "scattergeo": [
2212
+ {
2213
+ "marker": {
2214
+ "colorbar": {
2215
+ "outlinewidth": 1,
2216
+ "tickcolor": "rgb(36,36,36)",
2217
+ "ticks": "outside"
2218
+ }
2219
+ },
2220
+ "type": "scattergeo"
2221
+ }
2222
+ ],
2223
+ "scattergl": [
2224
+ {
2225
+ "marker": {
2226
+ "colorbar": {
2227
+ "outlinewidth": 1,
2228
+ "tickcolor": "rgb(36,36,36)",
2229
+ "ticks": "outside"
2230
+ }
2231
+ },
2232
+ "type": "scattergl"
2233
+ }
2234
+ ],
2235
+ "scattermapbox": [
2236
+ {
2237
+ "marker": {
2238
+ "colorbar": {
2239
+ "outlinewidth": 1,
2240
+ "tickcolor": "rgb(36,36,36)",
2241
+ "ticks": "outside"
2242
+ }
2243
+ },
2244
+ "type": "scattermapbox"
2245
+ }
2246
+ ],
2247
+ "scatterpolar": [
2248
+ {
2249
+ "marker": {
2250
+ "colorbar": {
2251
+ "outlinewidth": 1,
2252
+ "tickcolor": "rgb(36,36,36)",
2253
+ "ticks": "outside"
2254
+ }
2255
+ },
2256
+ "type": "scatterpolar"
2257
+ }
2258
+ ],
2259
+ "scatterpolargl": [
2260
+ {
2261
+ "marker": {
2262
+ "colorbar": {
2263
+ "outlinewidth": 1,
2264
+ "tickcolor": "rgb(36,36,36)",
2265
+ "ticks": "outside"
2266
+ }
2267
+ },
2268
+ "type": "scatterpolargl"
2269
+ }
2270
+ ],
2271
+ "scatterternary": [
2272
+ {
2273
+ "marker": {
2274
+ "colorbar": {
2275
+ "outlinewidth": 1,
2276
+ "tickcolor": "rgb(36,36,36)",
2277
+ "ticks": "outside"
2278
+ }
2279
+ },
2280
+ "type": "scatterternary"
2281
+ }
2282
+ ],
2283
+ "surface": [
2284
+ {
2285
+ "colorbar": {
2286
+ "outlinewidth": 1,
2287
+ "tickcolor": "rgb(36,36,36)",
2288
+ "ticks": "outside"
2289
+ },
2290
+ "colorscale": [
2291
+ [
2292
+ 0,
2293
+ "#440154"
2294
+ ],
2295
+ [
2296
+ 0.1111111111111111,
2297
+ "#482878"
2298
+ ],
2299
+ [
2300
+ 0.2222222222222222,
2301
+ "#3e4989"
2302
+ ],
2303
+ [
2304
+ 0.3333333333333333,
2305
+ "#31688e"
2306
+ ],
2307
+ [
2308
+ 0.4444444444444444,
2309
+ "#26828e"
2310
+ ],
2311
+ [
2312
+ 0.5555555555555556,
2313
+ "#1f9e89"
2314
+ ],
2315
+ [
2316
+ 0.6666666666666666,
2317
+ "#35b779"
2318
+ ],
2319
+ [
2320
+ 0.7777777777777778,
2321
+ "#6ece58"
2322
+ ],
2323
+ [
2324
+ 0.8888888888888888,
2325
+ "#b5de2b"
2326
+ ],
2327
+ [
2328
+ 1,
2329
+ "#fde725"
2330
+ ]
2331
+ ],
2332
+ "type": "surface"
2333
+ }
2334
+ ],
2335
+ "table": [
2336
+ {
2337
+ "cells": {
2338
+ "fill": {
2339
+ "color": "rgb(237,237,237)"
2340
+ },
2341
+ "line": {
2342
+ "color": "white"
2343
+ }
2344
+ },
2345
+ "header": {
2346
+ "fill": {
2347
+ "color": "rgb(217,217,217)"
2348
+ },
2349
+ "line": {
2350
+ "color": "white"
2351
+ }
2352
+ },
2353
+ "type": "table"
2354
+ }
2355
+ ]
2356
+ },
2357
+ "layout": {
2358
+ "annotationdefaults": {
2359
+ "arrowhead": 0,
2360
+ "arrowwidth": 1
2361
+ },
2362
+ "autotypenumbers": "strict",
2363
+ "coloraxis": {
2364
+ "colorbar": {
2365
+ "outlinewidth": 1,
2366
+ "tickcolor": "rgb(36,36,36)",
2367
+ "ticks": "outside"
2368
+ }
2369
+ },
2370
+ "colorscale": {
2371
+ "diverging": [
2372
+ [
2373
+ 0,
2374
+ "rgb(103,0,31)"
2375
+ ],
2376
+ [
2377
+ 0.1,
2378
+ "rgb(178,24,43)"
2379
+ ],
2380
+ [
2381
+ 0.2,
2382
+ "rgb(214,96,77)"
2383
+ ],
2384
+ [
2385
+ 0.3,
2386
+ "rgb(244,165,130)"
2387
+ ],
2388
+ [
2389
+ 0.4,
2390
+ "rgb(253,219,199)"
2391
+ ],
2392
+ [
2393
+ 0.5,
2394
+ "rgb(247,247,247)"
2395
+ ],
2396
+ [
2397
+ 0.6,
2398
+ "rgb(209,229,240)"
2399
+ ],
2400
+ [
2401
+ 0.7,
2402
+ "rgb(146,197,222)"
2403
+ ],
2404
+ [
2405
+ 0.8,
2406
+ "rgb(67,147,195)"
2407
+ ],
2408
+ [
2409
+ 0.9,
2410
+ "rgb(33,102,172)"
2411
+ ],
2412
+ [
2413
+ 1,
2414
+ "rgb(5,48,97)"
2415
+ ]
2416
+ ],
2417
+ "sequential": [
2418
+ [
2419
+ 0,
2420
+ "#440154"
2421
+ ],
2422
+ [
2423
+ 0.1111111111111111,
2424
+ "#482878"
2425
+ ],
2426
+ [
2427
+ 0.2222222222222222,
2428
+ "#3e4989"
2429
+ ],
2430
+ [
2431
+ 0.3333333333333333,
2432
+ "#31688e"
2433
+ ],
2434
+ [
2435
+ 0.4444444444444444,
2436
+ "#26828e"
2437
+ ],
2438
+ [
2439
+ 0.5555555555555556,
2440
+ "#1f9e89"
2441
+ ],
2442
+ [
2443
+ 0.6666666666666666,
2444
+ "#35b779"
2445
+ ],
2446
+ [
2447
+ 0.7777777777777778,
2448
+ "#6ece58"
2449
+ ],
2450
+ [
2451
+ 0.8888888888888888,
2452
+ "#b5de2b"
2453
+ ],
2454
+ [
2455
+ 1,
2456
+ "#fde725"
2457
+ ]
2458
+ ],
2459
+ "sequentialminus": [
2460
+ [
2461
+ 0,
2462
+ "#440154"
2463
+ ],
2464
+ [
2465
+ 0.1111111111111111,
2466
+ "#482878"
2467
+ ],
2468
+ [
2469
+ 0.2222222222222222,
2470
+ "#3e4989"
2471
+ ],
2472
+ [
2473
+ 0.3333333333333333,
2474
+ "#31688e"
2475
+ ],
2476
+ [
2477
+ 0.4444444444444444,
2478
+ "#26828e"
2479
+ ],
2480
+ [
2481
+ 0.5555555555555556,
2482
+ "#1f9e89"
2483
+ ],
2484
+ [
2485
+ 0.6666666666666666,
2486
+ "#35b779"
2487
+ ],
2488
+ [
2489
+ 0.7777777777777778,
2490
+ "#6ece58"
2491
+ ],
2492
+ [
2493
+ 0.8888888888888888,
2494
+ "#b5de2b"
2495
+ ],
2496
+ [
2497
+ 1,
2498
+ "#fde725"
2499
+ ]
2500
+ ]
2501
+ },
2502
+ "colorway": [
2503
+ "#1F77B4",
2504
+ "#FF7F0E",
2505
+ "#2CA02C",
2506
+ "#D62728",
2507
+ "#9467BD",
2508
+ "#8C564B",
2509
+ "#E377C2",
2510
+ "#7F7F7F",
2511
+ "#BCBD22",
2512
+ "#17BECF"
2513
+ ],
2514
+ "font": {
2515
+ "color": "rgb(36,36,36)"
2516
+ },
2517
+ "geo": {
2518
+ "bgcolor": "white",
2519
+ "lakecolor": "white",
2520
+ "landcolor": "white",
2521
+ "showlakes": true,
2522
+ "showland": true,
2523
+ "subunitcolor": "white"
2524
+ },
2525
+ "hoverlabel": {
2526
+ "align": "left"
2527
+ },
2528
+ "hovermode": "closest",
2529
+ "mapbox": {
2530
+ "style": "light"
2531
+ },
2532
+ "paper_bgcolor": "white",
2533
+ "plot_bgcolor": "white",
2534
+ "polar": {
2535
+ "angularaxis": {
2536
+ "gridcolor": "rgb(232,232,232)",
2537
+ "linecolor": "rgb(36,36,36)",
2538
+ "showgrid": false,
2539
+ "showline": true,
2540
+ "ticks": "outside"
2541
+ },
2542
+ "bgcolor": "white",
2543
+ "radialaxis": {
2544
+ "gridcolor": "rgb(232,232,232)",
2545
+ "linecolor": "rgb(36,36,36)",
2546
+ "showgrid": false,
2547
+ "showline": true,
2548
+ "ticks": "outside"
2549
+ }
2550
+ },
2551
+ "scene": {
2552
+ "xaxis": {
2553
+ "backgroundcolor": "white",
2554
+ "gridcolor": "rgb(232,232,232)",
2555
+ "gridwidth": 2,
2556
+ "linecolor": "rgb(36,36,36)",
2557
+ "showbackground": true,
2558
+ "showgrid": false,
2559
+ "showline": true,
2560
+ "ticks": "outside",
2561
+ "zeroline": false,
2562
+ "zerolinecolor": "rgb(36,36,36)"
2563
+ },
2564
+ "yaxis": {
2565
+ "backgroundcolor": "white",
2566
+ "gridcolor": "rgb(232,232,232)",
2567
+ "gridwidth": 2,
2568
+ "linecolor": "rgb(36,36,36)",
2569
+ "showbackground": true,
2570
+ "showgrid": false,
2571
+ "showline": true,
2572
+ "ticks": "outside",
2573
+ "zeroline": false,
2574
+ "zerolinecolor": "rgb(36,36,36)"
2575
+ },
2576
+ "zaxis": {
2577
+ "backgroundcolor": "white",
2578
+ "gridcolor": "rgb(232,232,232)",
2579
+ "gridwidth": 2,
2580
+ "linecolor": "rgb(36,36,36)",
2581
+ "showbackground": true,
2582
+ "showgrid": false,
2583
+ "showline": true,
2584
+ "ticks": "outside",
2585
+ "zeroline": false,
2586
+ "zerolinecolor": "rgb(36,36,36)"
2587
+ }
2588
+ },
2589
+ "shapedefaults": {
2590
+ "fillcolor": "black",
2591
+ "line": {
2592
+ "width": 0
2593
+ },
2594
+ "opacity": 0.3
2595
+ },
2596
+ "ternary": {
2597
+ "aaxis": {
2598
+ "gridcolor": "rgb(232,232,232)",
2599
+ "linecolor": "rgb(36,36,36)",
2600
+ "showgrid": false,
2601
+ "showline": true,
2602
+ "ticks": "outside"
2603
+ },
2604
+ "baxis": {
2605
+ "gridcolor": "rgb(232,232,232)",
2606
+ "linecolor": "rgb(36,36,36)",
2607
+ "showgrid": false,
2608
+ "showline": true,
2609
+ "ticks": "outside"
2610
+ },
2611
+ "bgcolor": "white",
2612
+ "caxis": {
2613
+ "gridcolor": "rgb(232,232,232)",
2614
+ "linecolor": "rgb(36,36,36)",
2615
+ "showgrid": false,
2616
+ "showline": true,
2617
+ "ticks": "outside"
2618
+ }
2619
+ },
2620
+ "title": {
2621
+ "x": 0.05
2622
+ },
2623
+ "xaxis": {
2624
+ "automargin": true,
2625
+ "gridcolor": "rgb(232,232,232)",
2626
+ "linecolor": "rgb(36,36,36)",
2627
+ "showgrid": false,
2628
+ "showline": true,
2629
+ "ticks": "outside",
2630
+ "title": {
2631
+ "standoff": 15
2632
+ },
2633
+ "zeroline": false,
2634
+ "zerolinecolor": "rgb(36,36,36)"
2635
+ },
2636
+ "yaxis": {
2637
+ "automargin": true,
2638
+ "gridcolor": "rgb(232,232,232)",
2639
+ "linecolor": "rgb(36,36,36)",
2640
+ "showgrid": false,
2641
+ "showline": true,
2642
+ "ticks": "outside",
2643
+ "title": {
2644
+ "standoff": 15
2645
+ },
2646
+ "zeroline": false,
2647
+ "zerolinecolor": "rgb(36,36,36)"
2648
+ }
2649
+ }
2650
+ },
2651
+ "title": {
2652
+ "text": "M2SL",
2653
+ "x": 0.5
2654
+ },
2655
+ "width": 650,
2656
+ "xaxis": {
2657
+ "anchor": "y",
2658
+ "domain": [
2659
+ 0,
2660
+ 1
2661
+ ],
2662
+ "title": {
2663
+ "text": "datetime"
2664
+ }
2665
+ },
2666
+ "yaxis": {
2667
+ "anchor": "x",
2668
+ "domain": [
2669
+ 0,
2670
+ 1
2671
+ ],
2672
+ "title": {
2673
+ "text": "M2SL"
2674
+ }
2675
+ }
2676
+ }
2677
+ }
2678
+ },
2679
+ "metadata": {},
2680
+ "output_type": "display_data"
2681
+ }
2682
+ ],
2683
+ "source": [
2684
+ "y = \"M2SL\"\n",
2685
+ "fig = px.line(df[y], x=\"datetime\", y=y, labels={\"Month\": \"Date\"})\n",
2686
+ "fig.update_layout(\n",
2687
+ " template=\"simple_white\",\n",
2688
+ " font=dict(size=18),\n",
2689
+ " title_text=y,\n",
2690
+ " width=650,\n",
2691
+ " title_x=0.5,\n",
2692
+ " height=400,\n",
2693
+ ")\n",
2694
+ "fig.show()"
2695
+ ]
2696
+ },
2697
+ {
2698
+ "cell_type": "code",
2699
+ "execution_count": null,
2700
+ "metadata": {},
2701
+ "outputs": [],
2702
+ "source": []
2703
+ },
2704
+ {
2705
+ "cell_type": "code",
2706
+ "execution_count": 11,
2707
+ "metadata": {},
2708
+ "outputs": [],
2709
+ "source": [
2710
+ "x = df[\"coal_price_data\"].newcastle\n",
2711
+ "y = df[\"coal_price_data\"].ICI_1\n",
2712
+ "\n",
2713
+ "slope, intercept, r, p, std_err = stats.linregress(x, y)"
2714
+ ]
2715
+ },
2716
+ {
2717
+ "cell_type": "code",
2718
+ "execution_count": 12,
2719
+ "metadata": {},
2720
+ "outputs": [
2721
+ {
2722
+ "name": "stdout",
2723
+ "output_type": "stream",
2724
+ "text": [
2725
+ "slope: 0.600533935403765\n",
2726
+ "intercept: 33.65381401159914\n",
2727
+ "r: 0.9606500704209069\n",
2728
+ "p: 1.9310655623962052e-81\n",
2729
+ "std_err: 0.01452032511898455\n"
2730
+ ]
2731
+ }
2732
+ ],
2733
+ "source": [
2734
+ "print(f\"slope: {slope}\")\n",
2735
+ "print(f\"intercept: {intercept}\")\n",
2736
+ "print(f\"r: {r}\")\n",
2737
+ "print(f\"p: {p}\")\n",
2738
+ "print(f\"std_err: {std_err}\")"
2739
+ ]
2740
+ },
2741
+ {
2742
+ "cell_type": "code",
2743
+ "execution_count": 13,
2744
+ "metadata": {},
2745
+ "outputs": [],
2746
+ "source": [
2747
+ "x = df[\"coal_price_data\"][\"newcastle\"]\n",
2748
+ "y = df[\"M2SL\"][\"M2SL\"]\n",
2749
+ "\n",
2750
+ "slope, intercept, r, p, std_err = stats.linregress(x, y)"
2751
+ ]
2752
+ },
2753
+ {
2754
+ "cell_type": "code",
2755
+ "execution_count": 14,
2756
+ "metadata": {},
2757
+ "outputs": [
2758
+ {
2759
+ "name": "stdout",
2760
+ "output_type": "stream",
2761
+ "text": [
2762
+ "slope: -20.46182026230733\n",
2763
+ "intercept: 17246.85603449831\n",
2764
+ "r: -0.4331490046040797\n",
2765
+ "p: 5.279632704944257e-08\n",
2766
+ "std_err: 3.5605661278914575\n"
2767
+ ]
2768
+ }
2769
+ ],
2770
+ "source": [
2771
+ "print(f\"slope: {slope}\")\n",
2772
+ "print(f\"intercept: {intercept}\")\n",
2773
+ "print(f\"r: {r}\")\n",
2774
+ "print(f\"p: {p}\")\n",
2775
+ "print(f\"std_err: {std_err}\")"
2776
+ ]
2777
+ },
2778
+ {
2779
+ "cell_type": "code",
2780
+ "execution_count": 15,
2781
+ "metadata": {},
2782
+ "outputs": [
2783
+ {
2784
+ "data": {
2785
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAGwCAYAAABrUCsdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABt/ElEQVR4nO3de1yUVf4H8M8Md5EZRISBRCU1lVDJG1JeUlFQoizb0qy1Mt0MLLUM3c1b7a6XdruYptXuL9s1tWzzbhhKSCreUEJETQ3vDJjIDKBcZJ7fH48zMjDADDwwFz7v12teOs8588w5Djpfz+V7ZIIgCCAiIiKiRpNbuwFEREREjoKBFREREZFEGFgRERERSYSBFREREZFEGFgRERERSYSBFREREZFEGFgRERERScTZ2g1wFDqdDteuXYOXlxdkMpm1m0NERERmEAQBRUVFCAwMhFze+PEmBlYSuXbtGoKCgqzdDCIiImqAy5cvo3379o2+DwMriXh5eQEQPxiFQmHl1hAREZE5tFotgoKCDN/jjcXASiL66T+FQsHAioiIyM5ItYyHi9eJiIiIJMLAioiIiEgiDKyIiIiIJGLVwGrx4sXo378/vLy84Ofnh7Fjx+LMmTOG8oKCAkyfPh3dunWDh4cHOnTogNdffx0ajcboPpcuXUJMTAxatWoFPz8/zJ49G3fu3DGqk5KSgj59+sDNzQ1dunTBmjVrarRn5cqV6NSpE9zd3REeHo7Dhw83Sb+JiIjIMVk1sNq7dy/i4uJw8OBBJCUloaKiAqNGjUJJSQkAMYXBtWvX8I9//ANZWVlYs2YNEhMTMXnyZMM9KisrERMTg/Lychw4cABfffUV1qxZg/nz5xvq5OTkICYmBsOGDUNGRgZmzJiBV155Bbt27TLU+eabbzBr1iwsWLAAx44dQ+/evREVFYX8/Pzm+wMhIiIiuyYTBEGwdiP0rl+/Dj8/P+zduxdDhgwxWWfjxo14/vnnUVJSAmdnZ/zwww947LHHcO3aNfj7+wMAVq9ejYSEBFy/fh2urq5ISEjAjh07kJWVZbjP+PHjUVhYiMTERABAeHg4+vfvjxUrVgAQE34GBQVh+vTpmDNnTo12lJWVoayszPBcv11To9FwVyAREZGd0Gq1UCqVkn1/29QaK/0Un4+PT511FAoFnJ3FTBFpaWno2bOnIagCgKioKGi1Wpw8edJQJzIy0ug+UVFRSEtLAwCUl5cjPT3dqI5cLkdkZKShTnWLFy+GUqk0PJgclIiIiGwmsNLpdJgxYwYeeeQRhIaGmqzz+++/47333sPUqVMN19RqtVFQBcDwXK1W11lHq9Xi9u3b+P3331FZWWmyjv4e1c2dOxcajcbwuHz5smUdJiIiIodjMwlC4+LikJWVhX379pks12q1iImJQUhICBYuXNi8jTPBzc0Nbm5u1m4GERER2RCbCKzi4+Oxfft2pKammjynp6ioCNHR0fDy8sKmTZvg4uJiKFOpVDV27+Xl5RnK9L/qr1Wto1Ao4OHhAScnJzg5OZmso78HAZU6AYdzCpBfVAo/L3cMCPaBk7xmplpz6xERETkaqwZWgiBg+vTp2LRpE1JSUhAcHFyjjlarRVRUFNzc3LB161a4u7sblUdEROBvf/sb8vPz4efnBwBISkqCQqFASEiIoc7OnTuNXpeUlISIiAgAgKurK/r27Ys9e/Zg7NixAMSpyT179iA+Pl7qbtudSp2AFcln8eX+Cyi8XWG4HqB0x7yYHmjj6WYIom6WlOPd7dlQa0sN9fy93PBceAd08vVkoEVERA7NqrsCX3vtNaxbtw5btmxBt27dDNeVSiU8PDyg1WoxatQo3Lp1C5s2bYKnp6ehTrt27eDk5ITKykqEhYUhMDAQy5Ytg1qtxgsvvIBXXnkFf//73wGI6RZCQ0MRFxeHl19+GcnJyXj99dexY8cOREVFARDTLUyaNAmfffYZBgwYgI8++gjffvstTp8+XWPtlSlS7yqwFYlZuZjz/QkU3qqov7KZApTuWBAbgujQAMnuSURE1BBSf39bNbCq7cDDL7/8Ei+++CJSUlIwbNgwk3VycnLQqVMnAMDFixcxbdo0pKSkwNPTE5MmTcKSJUsMOwcBMUHozJkzkZ2djfbt22PevHl48cUXje65YsUKvP/++1Cr1QgLC8Py5csRHh5uVl8cMbBKzMrFtLXHIPUPiP5TX/V8HwZXRERkVQ4VWDkSRwusKnUCBi1NRq6mtP7KDeTt4YKVE/tg4P1tOTVIRERW4dB5rMh2HM4paNKgCgAKb1dg4r8OYdDSZCRm5TbpexERETUHBlZkUn5R0wZVVak1pZi29hiDKyIisnsMrMgkPy/3+itJRLj7WLQtG5U6zkwTEZH9YmBFJg0I9kGAsvmCKwDI1ZTicE5Bs74nERGRlBhYkUlOchkWxIY0+/smZZs+QoiIiMgeMLCiWkWHBuDT5/qgsRv2asmqYdKWjGucDiQiIrvFwIrqNKZXAFZMeKhR9/BylaO1m5NZdW+UlHM6kIiI7BYDK6rXmF6BWP18nxprrgKU7ojs0a7e12vLdCguqzT7/ZpzRyIREZGUbOIQZrJ90aEBGBmiqnG48orkc9h96rqk79WcOxKJiIikxMCKzOYklyGic1vD88SsXHy4+1dJ3yNAKQZsRERE9ohTgdQglToBC7dmS37fBbEhPN6GiIjsFgMrapAVyWeh1kq3Fsq7lQtW81BmIiKyc5wKJIuJU4BnJbmXdysXvPRwMOKHd+FIFRER2T0GVmSRSp2ARdsaPwXo3coFKyf0wcDObRlQERGRw2BgRWap1Ak4nFOA/eeuI1fT+CnAwlsVkMtlDKqIiMihMLCieiVm5WLRtmxJAqqqmK+KiIgcDQMrMkk/QpWUrcb/7b/QJO9RW74q/XtXzZfFkS0iIrIHDKyohsaOUPl7uQKQIa+orM56yafzjPJi1fbeAUp3LIgNQXRoAIMuIiKyaQysyEhiVi6mrT2GhhyDrA9vxj50H745eqXe+l/8nAO5DJg7JqTO91ZrSjFt7TFMHRKMrb/k1hp0ERERWZtMEISGfIdSNVqtFkqlEhqNBgqFwtrNaZBKnYBBS5MbPFIVoHTH470D8HlqjtmBmVwGnH5vNJzksga9tz6Y+2R8GPKKynCx4BY6+rTCCxGd4OrMNG1ERFQ3qb+/OWJFBodzChoUVMUP64JHuviib8c2GPr+TxaNdukE4L9pFxASqGzQe+vfK35DhtH1v+08hSmDg/F2dA9OHRIRUbNhYEUGlu7SkwFQKd0xc+QDcJLLkHb+RoOCo4sFt+Dr5Wbx6+qiE4DPUnPw34OXcKu80nCdU4dERNSUOFdCBrXt0jNFP+ZT9Wy/hqZP6OjTyqL3tkTVoAq4t14rMSu3Sd6PiIhaNgZWZHCzpO5dfFWplO5YVe1sv4YER3IZ8EJEJwwI9kGA0h1NPUmnnzpctC0blTouLyQiImkxsCIA4sL193acqrfeSw93wvopA7EvYXiN6TR9cGSJKYOD4eosh5NchgWx4u7A5giucjWlOJxT0MTvRERELQ0DKwJg/sL1UQ+qEFHL+X5VgyNzjOjezpBqAQCiQwOw6vk+UFULzgKU7vjTkGDIIG3QxczvREQkNS5eJwDmBxn11YsODcDMyAfw4e5f673XK4M7m3z9yBCVyZ18D3VoI+nROk21rouIiFouBlYEAPBtbd6uPHOCkfjhXbD+8EWotabXbOl3Ew4I9jFZ7iSX1cjIDpgOupJP5+GLn3PMaru5709ERNRQDKwIiVm5WLAlq956chnQt2Obeus5yWVY+PiDmLb2GAAY5bUytZvQEtWDrojObSGXiVncq65Fl8kAQRDfT8r3JyIiqgszr0vEXjOvW3qEzfopA02OJtV277rO/ZNS+R0d/pt2wSjzevLpvGZ7fyIisk/MvE6SqdQJWLQt26JM6ZYs+K5rvZTUXJ3lmDz4fqu9PxEREcDAqkVryBE2li74rm29VHOx9vsTEVHLwsCqBbNk9IkLvomIiOrHPFYtmKWjT1zwTUREVDcGVi2YucfIBJg4voaIiIhqYmDVwo3v36HOxeszI7uaPL6GiIiIauIaqxbKVCqEqpiWgIiIyHIMrFqg+nJXzYzsivjhXbmeioiIyEKcCmxh6stdJQOw4cjl5mwSERGRw7BqYLV48WL0798fXl5e8PPzw9ixY3HmzBmjOqWlpYiLi0Pbtm3RunVrjBs3Dnl5eUZ1Ll26hJiYGLRq1Qp+fn6YPXs27ty5Y1QnJSUFffr0gZubG7p06YI1a9bUaM/KlSvRqVMnuLu7Izw8HIcPH5a8z9ZWX+4qAUCuphSHcwqar1FEREQOwqqB1d69exEXF4eDBw8iKSkJFRUVGDVqFEpKSgx1Zs6ciW3btmHjxo3Yu3cvrl27hqeeespQXllZiZiYGJSXl+PAgQP46quvsGbNGsyfP99QJycnBzExMRg2bBgyMjIwY8YMvPLKK9i1a5ehzjfffINZs2ZhwYIFOHbsGHr37o2oqCjk5+c3zx9GMzE3d5UlOa6IiIhIZFNnBV6/fh1+fn7Yu3cvhgwZAo1Gg3bt2mHdunV4+umnAQCnT59Gjx49kJaWhoEDB+KHH37AY489hmvXrsHf3x8AsHr1aiQkJOD69etwdXVFQkICduzYgaysewcNjx8/HoWFhUhMTAQAhIeHo3///lixYgUAQKfTISgoCNOnT8ecOXPqbbu9nBWYdv4GJnxxsN56lpwJSEREZK+k/v62qTVWGo0GAODjI2b3Tk9PR0VFBSIjIw11unfvjg4dOiAtLQ0AkJaWhp49exqCKgCIioqCVqvFyZMnDXWq3kNfR3+P8vJypKenG9WRy+WIjIw01KmurKwMWq3W6GEP6stdJYO4I5AZ1omIiCxnM4GVTqfDjBkz8MgjjyA0NBQAoFar4erqCm9vb6O6/v7+UKvVhjpVgyp9ub6srjparRa3b9/G77//jsrKSpN19PeobvHixVAqlYZHUFBQwzrezJzkMiyIDam1XADweO8A7ggkIiJqAJsJrOLi4pCVlYUNGzZYuylmmTt3LjQajeFx+bL97KSLDg3A1CHBtZZ/npqDxKzcZmwRERGRY7CJwCo+Ph7bt2/HTz/9hPbt2xuuq1QqlJeXo7Cw0Kh+Xl4eVCqVoU71XYL65/XVUSgU8PDwgK+vL5ycnEzW0d+jOjc3NygUCqOHvajUCdj6S92B06Jt2ajU2czyOyIiIrtg1cBKEATEx8dj06ZNSE5ORnCw8ShK37594eLigj179hiunTlzBpcuXUJERAQAICIiAidOnDDavZeUlASFQoGQkBBDnar30NfR38PV1RV9+/Y1qqPT6bBnzx5DHUfClAtERERNw6qZ1+Pi4rBu3Tps2bIFXl5ehvVMSqUSHh4eUCqVmDx5MmbNmgUfHx8oFApMnz4dERERGDhwIABg1KhRCAkJwQsvvIBly5ZBrVbjnXfeQVxcHNzc3AAAr776KlasWIG3334bL7/8MpKTk/Htt99ix44dhrbMmjULkyZNQr9+/TBgwAB89NFHKCkpwUsvvdT8fzBNjCkXiIiImoZVA6tVq1YBAB599FGj619++SVefPFFAMCHH34IuVyOcePGoaysDFFRUfj0008NdZ2cnLB9+3ZMmzYNERER8PT0xKRJk/Duu+8a6gQHB2PHjh2YOXMmPv74Y7Rv3x7/+te/EBUVZajz7LPP4vr165g/fz7UajXCwsKQmJhYY0G7varUCTicU4D8olL8XlRm1mv8vNybuFVERESOxabyWNkzW85jZerAZbkMqG0JlQyASumOfQnDuTuQiIgcmtTf3zyE2cHVduByXUEVACyIDWFQRUREZCGb2BVITaO+A5cBceSqKpXSHaue74Po0IAmbRsREZEj4oiVA6tv9x8gjlzNi+kBXy83+HmJGdc5UkVERNQwDKwcmLm7+ny93PBE2H1N3BoiIiLHx6lAB2burj7u/iMiIpIGAysHpj9wuS48cJmIiEg6DKwcmJNchsd7170InQcuExERSYeBlQMz50zArb/k8kxAIiIiiTCwcmDm7ArkmYBERETSYWDlwHgmIBERUfNiYOXAuCuQiIioeTGwcmADgn3g3cql1nIZuCuQiIhISgysHFhSthqFtypqLRfAMwGJiIikxMDKQenPCayLdysXjAxRNVOLiIiIHB8DKwdlzo7AwlsV3BFIREQkIQZWDoo7AomIiJofAysHdeH3ErPqcUcgERGRdBhYOaBKnYD1hy/VW487AomIiKTFwMoBHc4pgFpbVm+98f07cEcgERGRhBhYOSBz10118m3VxC0hIiJqWRhYOSBmXCciIrIOBlYOaECwDwKUdQdNXF9FREQkPQZWDshJLsPjvQPqrPN47wCuryIiIpIYAysHVKkTsPWX3DrrbP0lF5U6oZlaRERE1DIwsHJA5mRdz9WUGmVdr9QJSDt/A1syriLt/A0GXURERA3gbO0GkPQszbqemJWLRduyjYKxAKU7FsSGIDq07ilFIiIiuocjVg7Ikl2BiVm5mLb2WI0RLrWmFNPWHkNiVt1TikRERHQPAysHpN8VWNvSdBnEEam+Hdtg0bZsmJr0019btC2b04JERERmYmDlgJzkMiyIDQGAGsGV/vmC2BCkX7xZ51osATXXYhEREVHtGFg5qOjQAKx6vg9U1fJZqZTuWPV8H0SHBli8FouIiIjqxsXrDqBSJ+BwTgHyi0rh5yUm/nSSyxAdGoCRISqTZQAztBMREUmNgZWdq2tHX11BFXBvLZZaU2pynZUM4ggXM7QTERGZh4GVHdPv6KseFKk1pXh17TF4t3JB4a0Kw/XqKRT0a7GmrT0GGWB0n6prsZihnYiIyDxcY2WnKnVCvTv6qgZVgOkUCuasxSIiIiLzcMTKTpmTXb06AeJI1KJt2RgZojKMRNW3FouIiIjMw8DKTjV0p17VFAoRndsarjvJZUbPiYiIyHKcCrRTjd2pxxQKRERE0mNgZafqy65eH6ZQICIikh4DKztVV3b1uuiPs2EKBSIiIukxsLJjte3oq4sAplAgIiJqKlYNrFJTUxEbG4vAwEDIZDJs3rzZqLy4uBjx8fFo3749PDw8EBISgtWrVxvVKS0tRVxcHNq2bYvWrVtj3LhxyMvLM6pz6dIlxMTEoFWrVvDz88Ps2bNx584dozopKSno06cP3Nzc0KVLF6xZs6Ypuiy56NAA7EsYjvhhnc2q//IjnZhCgYiIqIlYNbAqKSlB7969sXLlSpPls2bNQmJiItauXYtTp05hxowZiI+Px9atWw11Zs6ciW3btmHjxo3Yu3cvrl27hqeeespQXllZiZiYGJSXl+PAgQP46quvsGbNGsyfP99QJycnBzExMRg2bBgyMjIwY8YMvPLKK9i1a1fTdV5CTnIZHunSzqy6I0NUTdwaIiKilksmCIKpHJPNTiaTYdOmTRg7dqzhWmhoKJ599lnMmzfPcK1v374YPXo0/vrXv0Kj0aBdu3ZYt24dnn76aQDA6dOn0aNHD6SlpWHgwIH44Ycf8Nhjj+HatWvw9/cHAKxevRoJCQm4fv06XF1dkZCQgB07diArK8vwPuPHj0dhYSESExNNtresrAxlZWWG51qtFkFBQdBoNFAoFFL+0ZilUidg0NLkeo+n2ZcwnNOAREREd2m1WiiVSsm+v216jdXDDz+MrVu34urVqxAEAT/99BN+/fVXjBo1CgCQnp6OiooKREZGGl7TvXt3dOjQAWlpaQCAtLQ09OzZ0xBUAUBUVBS0Wi1OnjxpqFP1Hvo6+nuYsnjxYiiVSsMjKChIsn43RNXF7KYIAB7vHcCgioiIqAnZdGD1ySefICQkBO3bt4erqyuio6OxcuVKDBkyBACgVqvh6uoKb29vo9f5+/tDrVYb6lQNqvTl+rK66mi1Wty+fdtk2+bOnQuNRmN4XL58udH9bazo0ABMHRJca/nnqTlGx9kQERGRtGw68/onn3yCgwcPYuvWrejYsSNSU1MRFxeHwMDAGiNMzc3NzQ1ubm5WbUN1lToBW3+pO3CqfpwNERERScdmA6vbt2/jz3/+MzZt2oSYmBgAQK9evZCRkYF//OMfiIyMhEqlQnl5OQoLC41GrfLy8qBSiYu0VSoVDh8+bHRv/a7BqnWq7yTMy8uDQqGAh4dHU3VRcvWdH1jbcTZEREQkDZudCqyoqEBFRQXkcuMmOjk5QafTARAXsru4uGDPnj2G8jNnzuDSpUuIiIgAAERERODEiRPIz8831ElKSoJCoUBISIihTtV76Ovo72EvzD2mhsfZEBERNQ2rjlgVFxfj3Llzhuc5OTnIyMiAj48POnTogKFDh2L27Nnw8PBAx44dsXfvXvznP//BBx98AABQKpWYPHkyZs2aBR8fHygUCkyfPh0REREYOHAgAGDUqFEICQnBCy+8gGXLlkGtVuOdd95BXFycYSrv1VdfxYoVK/D222/j5ZdfRnJyMr799lvs2LGj+f9QGsHcY2p4nA0REVHTsGq6hZSUFAwbNqzG9UmTJmHNmjVQq9WYO3cufvzxRxQUFKBjx46YOnUqZs6cCZlMXCNUWlqKN998E+vXr0dZWRmioqLw6aefGqb5AODixYuYNm0aUlJS4OnpiUmTJmHJkiVwdnY2asvMmTORnZ2N9u3bY968eXjxxRfN7ovU2zUbgikXiIiILCP197fN5LGyd7YQWAFAYlYupq09BgBGwZU+jFr1fB9mXiciIrqrReWxIsvVdn6gSunOoIqIiKiJ2eyuQGq46NAAjAxR4XBOAfKLSuHn5Y4BwT6c/iMiImpiDKwclJNcxpQKREREzYxTgUREREQSYWBFREREJBEGVkREREQSYWBFREREJBEGVkREREQSYWBFREREJBEGVkREREQSYWBFREREJBEGVkREREQSYWBFREREJBEeaeOAKnUCzwkkIiKyAgZWDiYxKxeLtmUjV1NquBagdMeC2BBEhwZYsWVERESOj1OBDiQxKxfT1h4zCqoAQK0pxbS1x5CYlWullhEREbUMDKwcRKVOwKJt2RBMlOmvLdqWjUqdqRpEREQkBQZWDuJwTkGNkaqqBAC5mlIczilovkYRERG1MAysHER+Ue1BVUPqERERkeUYWDkIPy93SesRERGR5RhYOYgBwT4IULqjtqQKMoi7AwcE+zRns4iIiFoUBlYOwkkuw4LYEACoEVzpny+IDWE+KyIioibEwMqBRIcGYNXzfaBSGk/3qZTuWPV8H+axIiIiamJMEOpgokMDMDJExczrREREVsDAygE5yWWI6NzW2s0gIiJqcTgVSERERCQRBlZEREREEmFgRURERCQRBlZEREREEmFgRURERCQRBlZEREREEmFgRURERCQRBlZEREREEmFgRURERCQRBlZEREREEmFgZet0lUD2+8DuocBttbVbQ0RERHXgWYG27tZlIONt8febAsRfI38G/AZZr01ERERkEkesbF3rTkCn542v7R4MrJMBpz+0SpOIiIjINAZW9uDh/wLjK4Cu04yvH5slBlipTwJ3bqNSJyDt/A1sybiKtPM3UKkTrNNeIiKiFsqqgVVqaipiY2MRGBgImUyGzZs316hz6tQpPP7441AqlfD09ET//v1x6dIlQ3lpaSni4uLQtm1btG7dGuPGjUNeXp7RPS5duoSYmBi0atUKfn5+mD17Nu7cuWNUJyUlBX369IGbmxu6dOmCNWvWNEWXG07uDPT/FHhOACLWGpdd2Qx82wpFX3vj7a82440NGZjwxUEMWpqMxKxcqzSXiIioJbJqYFVSUoLevXtj5cqVJsvPnz+PQYMGoXv37khJSUFmZibmzZsHd3d3Q52ZM2di27Zt2LhxI/bu3Ytr167hqaeeMpRXVlYiJiYG5eXlOHDgAL766iusWbMG8+fPN9TJyclBTEwMhg0bhoyMDMyYMQOvvPIKdu3a1XSdb4zgiWKANSYTkN37CL2dtPi5+yu40OsxDPM6ArWmFNPWHmNwRURE1ExkgiDYxHyRTCbDpk2bMHbsWMO18ePHw8XFBf/9739Nvkaj0aBdu3ZYt24dnn76aQDA6dOn0aNHD6SlpWHgwIH44Ycf8Nhjj+HatWvw9/cHAKxevRoJCQm4fv06XF1dkZCQgB07diArK8vovQsLC5GYmGhW+7VaLZRKJTQaDRQKRQP/FCxXqRMQtWwr/urzDga2zqpRvjLvGawtnYJ9CSPgJJc1W7uIiIjsgdTf3za7xkqn02HHjh144IEHEBUVBT8/P4SHhxtNF6anp6OiogKRkZGGa927d0eHDh2QlpYGAEhLS0PPnj0NQRUAREVFQavV4uTJk4Y6Ve+hr6O/hyllZWXQarVGD2s4nFOAc4XOGP/bEnTK3Iblec8alcf5f4u0jiNRsuNhoFxjlTYSERG1FDYbWOXn56O4uBhLlixBdHQ0fvzxRzz55JN46qmnsHfvXgCAWq2Gq6srvL29jV7r7+8PtVptqFM1qNKX68vqqqPVanH79m2T7Vu8eDGUSqXhERQU1Og+N0R+UWmVZzJ8kPcCOmVux4s5C4zqKYoOAt95i4vdC080axuJiIhaCpsNrHQ6HQDgiSeewMyZMxEWFoY5c+bgsccew+rVq63cOmDu3LnQaDSGx+XLl63SDj8vd5PXU4r6o1Pmdgw+/S/8fkdpXLizlxhg5aw1+VoiIiJqGJsNrHx9feHs7IyQkBCj6z169DDsClSpVCgvL0dhYaFRnby8PKhUKkOd6rsE9c/rq6NQKODh4WGyfW5ublAoFEYPaxgQ7IMApTtqWz11pVyF2Kv/Q+XTJUDQU8aFaS+IAdbhPwG6O6ZvQERERGaz2cDK1dUV/fv3x5kzZ4yu//rrr+jYsSMAoG/fvnBxccGePXsM5WfOnMGlS5cQEREBAIiIiMCJEyeQn59vqJOUlASFQmEI2iIiIozuoa+jv4ctc5LLsCBW7Ef14Er/fEFsCJxcWwGD/yfuJuxTLbHouc+BDS7A9hDgdh6IiIioYawaWBUXFyMjIwMZGRkAxLQHGRkZhhGp2bNn45tvvsEXX3yBc+fOYcWKFdi2bRtee+01AIBSqcTkyZMxa9Ys/PTTT0hPT8dLL72EiIgIDBw4EAAwatQohISE4IUXXsAvv/yCXbt24Z133kFcXBzc3NwAAK+++ip+++03vP322zh9+jQ+/fRTfPvtt5g5c2bz/6E0QHRoAFY93wcqpfG0oErpjlXP90F0aIDxC7rPEAOskfuMr2tPAZtU4ijW9QNN22giIiJHJFjRTz/9JACo8Zg0aZKhzr///W+hS5cugru7u9C7d29h8+bNRve4ffu28Nprrwlt2rQRWrVqJTz55JNCbm6uUZ0LFy4Io0ePFjw8PARfX1/hzTffFCoqKmq0JSwsTHB1dRXuv/9+4csvv7SoLxqNRgAgaDQai14npTuVOuHAud+FzcevCAfO/S7cqdSZ98JbuYKwrbsgfI2aj1MfNW2jiYiIrEjq72+byWNl76yVx0pSujvA0ThxarC6oHHAw2sBJ9OL5YmIiOxRi8ljRVYgdwYGfCZOEw78yrjs8v+AbzyA7/2B4gtWaR4REZGtY2BFpt3/RzHAGp1hfL00H9gaLK7DuvaDVZpGRERkqxhY2alKnYC08zewJeMq0s7fQKWuiWZ02/QWA6ynbwLtBhmXpYwRA6zM+QBnlImIiGznrEB715xrrHZm5uKdLVkoKCk3XAtQumNBbEjNHYBSE3TAL+8A2Ytrlvk9CgzdArjY6RozIiJqcWx2jdX58+cxfPhwqW5HtVi8MxuvrTtmFFQBQK6mFNPWHkNiVm7TNkAmB8L+Lo5iDdlqXJafAmxUAuudgMKaB0ITERE5OskCq+LiYsMZftQ0dmZew2epObWWCwAWbctuumnB6trHigFW7DnA1adKQ3TAzp7iNOGFdc3TFiIiIhvgbG7F5cuX11l+9erVRjeGalepE/DOlvpHgXI1pTicU4CIzm2boVV3eXUGnr4B3LkNHJgAXNlyr+zARPHRdRrQd7m485CIiMhBmf0tN2PGDAQEBMDV1dVkeXl5ucnrJI2Dv91AQUmFWXXzi0qbuDW1cPYAhmwWF7Kf/hA4/ua9srOrxIcyFBixB3D3s04biYiImpDZgVXHjh2xdOlSPPPMMybLMzIy0LdvX8kaRvckZuUi4X+ZZtf387JyEk+ZDOgxS3zkpwK7h94r02SJubAAYOQBoJ3tn8dIRERkLrPXWPXt2xfp6em1lstkMnCDofR2Zubi1bXHoLl9x6z6CndnDAj2qb9ic/EbIq7DevIa4PWAcVnSw+I6rDMrrNM2IiIiiZkdWL377rv4wx/+UGt5SEgIcnJqX1hNltuZeQ3x649Z9Jpxfe6Dk1zWRC1qBI8AIPYMML4c6DzZuCx9uhhg7XsWqCyzTvuIiIgkwDxWEpE6D0ZiljhSZan1UwY278L1xvhtDXDwpZrX3VVA1EHAs2OzN4mIiFoWm81jRdKp1AlYtC3b4tcFKN1taxqwPve/ePfYnOPG10vVwJZOd4/N2WWNlhERETUIAysbdDinALkay3b2yQAsiA2xzWnA+rQJu3tsTgHgW20xe0r03WNzFvLYHCIisnkMrGyQpekSApTuWPV8n6Y/zqapubYBRh0AJlQCPd42LstaBKyXA3tGABVF1mkfERFRPRhY2SBL0iXE9lJhX8Jw+w+qqpLJgYeW3j02Z7NxWV4ysFEBbHAFNJZPlxIRETUlBlY2aECwDwKU7jBnUm/fuRtN3h6rav/E3WNzzgIu3veu6yqAHQ+K04QXv7Fa84iIiKoye1dgfUfa6L3++uuNapC9suauwJmRXfFG5AP1V3QEd26JaRmuba9Z1vE5IOIrHptDRERmk/r72+zAKjg4uP6byWT47bffGt0oeyT1BwMA7247if/bf6Heet4eLkifN9I+F643lCAAp/4BZLxtuvyJC0zXQERE9bJaYEV1a4rAKu38DUz44qBZde0qf5XU8lKAPcNMlw3+HxD0VLM2h4iI7AfzWLUgfTu2MWudFQDszlY3aVtsmv+j4jqsx07XLPt5nLgO6+DLzd4sIiJqecwOrJKTkxESEgKtVlujTKPR4MEHH0RqaqqkjWvp0i/ehLnDif/efwGJWblN2h6bp+gmBljP3hZTN1T125digLXBVVynRURE1ATMDqw++ugjTJkyxeQwmVKpxJ/+9Cd8+OGHkjaupbM0n9Wc709g/9nfUalr4bO7Tu5istHnBKDra8ZlugrgW08xyCrMsk77iIjIYZkdWP3yyy+Ijo6utXzUqFFIT0+XpFEksiSfFQAU3qrAxH8fwqClyRy90uu/UgywhprYRbizpxhgnf2s+dtFREQOyezAKi8vDy4uLrWWOzs74/r165I0ikSW5LOqSq0pxbS1x/Dx7rPYknEVaedvcBTrvhgxwBp7pWbZkVfFACt5JI/NISKiRjE74c99992HrKwsdOnSxWR5ZmYmAgIcKPu3DXCSy7AgNgTTzMxnpacPDT7c/avhWoDSHQtiQ4wytFfqBBzOKUB+USn8vMQDnB0+ZUOr+8QAS1cJJD4EFJ64V6beLR6bAwDjbgBudnSgNRER2QSz0y1Mnz4dKSkpOHLkCNzdjaeobt++jQEDBmDYsGFmJxJ1NE2RbkEvMSsXC7dmQ621bM1VVfpwSX+mYGJWLhZtyzY67FmlcMeEAR3QybdVywm0ACDrb0DmO6bLIn8G/AY1b3uIiKjZWC2PVV5eHvr06QMnJyfEx8ejW7duAIDTp09j5cqVqKysxLFjx+Dv79/oRtmjpgysAHF0aUXyWXy4+2yD7yEDoFK6Y15MD8StO17vjkNTo1y2oklG266nAUkPmy7ruRDouaBx9yciIptj1QShFy9exLRp07Br1y7oXyaTyRAVFYWVK1ealZ3dUTV1YKVnaqTJUj6eLigoqai3XvVRLlth6s9A0iCwvBD4ro3pMkU3YEwWj80hInIQNpF5/ebNmzh37hwEQUDXrl3Rpk0tX0ItSHMFVoA4WnPwtxuI+/oYCm/XHyA1hn6Ua1/CcLNHhJpy7VZiVi6mrT1WY7StSYJAQQD2PgZc22m6/IlLgGeQNO9FRERWYROBFdXUnIGVnj7IAGB2ItGGMvfInKYcTarUCRi0NLnW0bqGBIFmO/9v4NArpsuGbAbaPyHt+xERUbOQ+vvb7PmMp54y77y177//vsGNIctEhwZg1fN9zJ4alAHw8XTFjZJyi9/LnGSltY0m6dM/NHY06XBOQZ39FADkakpxOKdA+nMTO08WH5pTwI4Q47LUsXfrTAHCP5f2fYmIyK6YHVgplcqmbAc1UHRoAEaGqAxTbxd+L8GHu89CBuNRLP34zXtPhOK9HdlQa0otGuWqLVmpftpPrbmN93acMnlP4e77L9qWjZEhqgaPJpmbid7SjPUWUfYQ0zXcuQ187wfcKb5Xdv4L8eHkIaZrcPZounYQEZFNMjuw+vLLL5uyHdQITnKZ0QhNN5VXzVQKVabj5HJg2tpjNYIvU/TTawOCa+Z0siQNhBSjSeZmorc0Y32DOHsAzxSJvz/8J+BclZGqytvAt63E38ecBJQhNV9PREQOiWusJGKNNVZ1qW8BuTm7C2tbEC6mfjhnlIDUXJMf6YR5sQ9a/Dr9+w5amlzraFuTrrEyx5WtQGota60GfAF0qWWNFhERWQ0Xr9soWwuszFE1+LrwewnWH74EtbbMUO7dygUvPRyM+OFdDIGKOEp10qieJXw8XXDkLyMbHPjUtmDfplJD3LoCbK5lt2BAFPDoD4CsBSReJSKyAwysbJQ9BlbV6ZOQfrn/glEaB/2uPgAmF6dbytwdhrVp8jxWUtHdAXb2ArSnapYFRAODvwOcPZu/XUREZMDAykY5QmBVV44oAeIIVuGtxufN+nh8GJ4Iu69R97C7cw5PvAucMJG53dkTiD4GKB5o/jYREREDK1tl74FVfTmipDQvpgd8vdzsIyCSmuYUkNhXXOBe3eD/AUHmpTUhIiJpSP39LZegTQ2WmpqK2NhYBAYGQiaTYfPmzbXWffXVVyGTyfDRRx8ZXS8oKMDEiROhUCjg7e2NyZMno7i42KhOZmYmBg8eDHd3dwQFBWHZsmU17r9x40Z0794d7u7u6NmzJ3burCXbtoOqL0eUVOQy4L0dp/DGhgxM+OIg+r6XhI93n0WlroXE98oewLO3gD8UAapRxmU/jwPWyYD0WYCgs077iIioUawaWJWUlKB3795YuXJlnfU2bdqEgwcPIjAwsEbZxIkTcfLkSSQlJWH79u1ITU3F1KlTDeVarRajRo1Cx44dkZ6ejvfffx8LFy7E55/f2x5/4MABTJgwAZMnT8bx48cxduxYjB07FllZWdJ11sY1ae6nKqrHT4W3K/Dh7l/Re9GPeHfbSaSdv9EygiyX1sDwXcAEHdDrPeOyMx8C652AxP5AWYF12kdERA1iM1OBMpkMmzZtwtixY42uX716FeHh4di1axdiYmIwY8YMzJgxAwBw6tQphISE4MiRI+jXrx8AIDExEWPGjMGVK1cQGBiIVatW4S9/+QvUajVcXV0BAHPmzMHmzZtx+vRpAMCzzz6LkpISbN++3fC+AwcORFhYGFavXm1W++19KjDt/A1M+OJgk91fLqsZVNXGx9MVY8MCMTJE1bKmCnOTgJ9GmS6LPgr49G3e9hARtQAONRVYH51OhxdeeAGzZ8/Ggw/WzH2UlpYGb29vQ1AFAJGRkZDL5Th06JChzpAhQwxBFQBERUXhzJkzuHnzpqFOZGSk0b2joqKQlpZWa9vKysqg1WqNHvZsQLAPApTuqC2EkQFo5epk0T19PF3w4bNhmBfTw+ygCgAKSsrxf/svYMIXBzFoaTISs3Itel+7FTBSzOr+xEWgVXvjssR+4jThuX9Zp21ERGQWmw6sli5dCmdnZ7z++usmy9VqNfz8/IyuOTs7w8fHB2q12lDH39/fqI7+eX119OWmLF68GEql0vAICqolb5GdcJLLDCkVqgdX+ud/GtLZ7PvJAPz9yZ548qH74Ovl1uB25d49Z7DFBFcA4NkBGHsZeLYU6PiccdnhKWKAlTYJqLT8zEciImpaNhtYpaen4+OPP8aaNWsgs8FkinPnzoVGozE8Ll++bO0mNZr+UGeV0vhIGJXSHaue74P44V0QoKz/uJiAu/X1OaUae8SMAOCtjZnYdOxKy1mDBQBObsAjX4ujWP0/NS7L+Q/wjRuw5X7g1lXrtI+IiGow+6zA5vbzzz8jPz8fHTp0MFyrrKzEm2++iY8++ggXLlyASqVCfn6+0evu3LmDgoICqFQqAIBKpUJeXp5RHf3z+uroy01xc3ODm1vDR2JsVfVDnaunRFgQG2Iy87nezMiuiB/e1WhdlH6asTG7DovL7mDmt78AAFQKdyx83MaSgTa1rtPEx++HgR/D710vyQE23502HPET4P+oVZpHREQimx2xeuGFF5CZmYmMjAzDIzAwELNnz8auXbsAABERESgsLER6errhdcnJydDpdAgPDzfUSU1NRUXFvcSWSUlJ6NatG9q0aWOos2fPHqP3T0pKQkRERFN30ybpD3V+Iuw+RHRuaxQk1TaqFaB0x+rn++CNyAdqLDbXTzNKNe6o1pbi1ZY2PajnO0AcwXrqOtAmzLhszzBxmjB7KWAbe1KIiFocq+4KLC4uxrlz5wAADz30ED744AMMGzYMPj4+RiNVep06dTLaFQgAo0ePRl5eHlavXo2Kigq89NJL6NevH9atWwcA0Gg06NatG0aNGoWEhARkZWXh5ZdfxocffmhIy3DgwAEMHToUS5YsQUxMDDZs2IC///3vOHbsGEJDQ83qi73vCrRUQzKfJ2blYs73JyTJ3g4AbVq54Og7DT930CHoKoFjM4FfP6lZFhgDDPoWcG7V/O0iIrITDpV5PSUlBcOGDatxfdKkSVizZk2N66YCq4KCAsTHx2Pbtm2Qy+UYN24cli9fjtatWxvqZGZmIi4uDkeOHIGvry+mT5+OhIQEo3tv3LgR77zzDi5cuICuXbti2bJlGDNmjNl9aWmBVUNV6gQkfJeJ745dkeR+X78Sjke6+EpyL7t38Rtg//ia110UQNRRQNG1+dtERGTjHCqwciQMrMxXfkeHbu/80OjDnAEgblhnDOrSzn7ODGwOmmzgh4cAnYldg4M3AUFjm71JRES2ioGVjWJgZT4pk5F6ujqhpLzS8DxA6Y55MSFo4+nKYKuiCPj5KUC9u2ZZj9lA2BJAZrPLLImImgUDKxvFwMp8WzKu4o0NGc32fi02k7ueIABZ7wInFtYsaxsODPsBcG3T7M0iIrIFDKxsFAMr8zX18Tl1CVC6Y0FsC0vVUNW1XUBKtOmy6GOAz0PN2x4iIitrUUfakGOq7/icptQiM7lXFRh199icC4BHtUPNE/uI6RrOf2mVphEROQIGVtTsqh6f0xBKj8bltRUAzP3+RMvJ4G6KZ0fgyavisTkdnjUuO/SyGGAdfBnQSZMag4iopeBUoEQ4FWi5xKxcLNyaDbW29ozsMgD+Cjf885kw/F5cBj8vd+h0Aib++1Cj339mZFe8EflAo+/jMM6sANKn17zeugswMhXwaKHTp0Tk0DgVSA4jOjQA++cMx8xI0/mV9FOFCx9/EAPvbws/L3fkF4lBmErR+KnEL/dfaNmjVtV1ixenCUelGV8vPgdsChRHsfJTrdM2IiI7YbNnBVLL4CSX4Y3IB9BN5YVF27KNzhNU3V1oDgCDliYblXm3coEAMfhqaGhUeLsCh3MKENG5bcM74Ih8B4oBVmk+kBwJFJ64V7Z7qPjrQ+8D3d8EbPCAdCIia+JUoEQ4Fdh4VY/J8W3tBgjAntN5+L/9F2rU1QdU3q1cGnVEzsfjw/BE2H0Nfn2LoKsE0l8Hzn5as+y+WOCRDTw2h4jsFqcCyWHpD392c5bjzW9/wcR/HzIZVAEwjFa5O8sRN6xzg9/Tz8u9/kotndwJ6L9SHMV6+GvjsqvbgG89gY1tgKLz1mkfEZENYWBFNiUxKxevrj1W54J2PQGAWlsGn1auFr+PDGJOqwHBPpY3siXr9JwYYI05Acic7l2vKAS2dRHXYV3ZarXmERFZGwMrshnld3R4a2Omxa/z8XS1KC+Wvt6C2JCWl4VdKt6hwIQ7wB80gN+jxmWpT4gBVsYcQNBZpXlERNbCwIqsplInIO38DWzJuIqPd59F+N92o7jsjsX3USk9DIvczQmTVEp3rHq+T8vNvi4lFwUQ+RMwQQeEzjcuy14KrHcCkgYB5YVWaR4RUXPj4nWJcPG6ZRKzcmvsArSUDGKQtC9hOJzkMpP3FA9l7oE2nm48lLm5XN0J7I0xXTY6A2jTu1mbQ0RUF54VaKMYWNVPv+svKVtd66J0c+nDouojT1V3FjKIsrLiHODHgWLahuoGfgXc/8fmbxMRUTUMrGwUA6u6STFCVVWLP0zZnlSWAgdeAC5/V7Os8ytA/1WAnCn1iMg6GFjZKAZW91QfNbpZUo64dccanMizqlauTvjij/0w8P62HImyR6c/Bo7NqHld0Q0YkQJ4qJq5QUTU0jGwslEMrESmRqbkMkCqk2NWc9G5Y7i+X1zUbkrkz4BfLWVERBKT+vub4+/UKFVHpy78fgsf7f61xsiUFEGVSuGGhY8/yKDKUbR7RMyHdTsPSB4OaLLvle0eLP7a5wOg+0zrtI+IqIE4YiURex+xasiib6nXTdVmZmRXxA/vyqk/R6a7AxyNB859VrOs/ZNixndnj+ZvFxE5PE4F2ih7DqxqS1NQ1+LwxKxcTFsrzbqp2nCBeguV818gzcSOQbe2QNRhoPX9zd8mInJYDKxslL0GVjszc/HaumM1rteWzgAQR7cGLU2WfKRKpXDDhAEd0MnXk6kSCCg8AezsZbps6HbgvlpyZRERWYBrrEgyOzOvIX79cZNl+kOOF23LxsgQlVGAczinQNKgavIjnRAZomIgRca8e4rrsMo1QOrjQH7qvbK9j4m/PvhnoNdfARl/bojINjCwamEsSdIpAMjVlOJwTgEiOrc1XM8valhQVX13IKf6yCyuSiByLyAIQOY84OTf7pWd/Lv4aDcYGLpNrEtEZEUMrFqQhi42rx5I+Xm5W/R6/VjCigkP8WgZajiZDOj9V/FxdTuwN/Ze2fWfge+8xd+PyRRHu4iIrICBVQvRmMXm1QOpAcE+CFC6Q60pNet+Ko5MkdTue0ycJiz+DdgVDpT9fq9Mvy4rYi0QPNE67SOiFouL1yViy4vXG7PYPKDKIcdV6QM1AEbBlezu85mRXbkInZrPndvAgYnAlU01y7r8Cei3gsfmEJFJUn9/yyVoE9m4xiw2nxcTYjIoig4NwKrn+0ClNB7NUindsfr5Pngj8gE8EXYfIjrz6BlqBs4ewJDvxVGsPh8Yl537DNjgAux40PSB0EREEuJ/4VqAhi42B4A2nq61lkWHBmBkiMrixKJETar7TPGR/zOwe8i965ps4Ht/8fcj9wPtHrZO+4jIoTGwagEsXWxeVX1BmZNcZrRjkMhm+A2+e2yOGtgzDNCevleW9Ij4a9+PgW6vW6d9ROSQOBXYAgwI9oFK0bDgqjFBGZFN8FABj50CxlcAnV8xLkt/A1gnA35+Gqhs2qOZiKhlYGDVAjjJZZgwoINFr5FBXLg+INinaRpF1NzkzkD4F+Io1sA1xmWX/wd84yFOFRZfsEbriMhBMLBqITr5tjK7rn6F1IJY0wvXieze/ZPEAGt0hvH10nxga7A4inXtB6s0jYjsGwOrFsKSKT2V0t3kGYFEDqdNbzHAevom4FttMXvKGDHAylwgZn0nIjIDA6sWYkCwD3zq2OFX1bJxvRhUUcvi6g2M2g9MqARC5hiXZb0LrJcDu4cBFVqrNI+I7AcDqxbCSS5DuJnrpQ7lFDRxa4hslEwOhC0WR7GGbDEuy08BNiqB9c5A4UmrNI+IbB8DqxakcztPs+r9dr2oiVtCZAfaPy4GWLFnAdc2964LlcDOUHGa8MJ667WPiGwSAys7U6kTkHb+BrZkXEXa+Ruo1Jm/9iM82Lx8U2m/WXZfIofm1QV4ugB4pgS473HjsgPPiQHWkThAV2md9hGRTWGCUDuSmJWLhVuzodbey7ejUrhj4ePmHXAsl5m3w+/mrTs4nFPAxJ9EVTm3AoZuEReyn/4ncHz2vbKzn4oP757A8D2AezvrtZOIrIojVnYiMSsXr649ZhRUAYBaW4pX1x5DYlZuvffILy4z+/0acwwOkUOTyYAeb4nThCNSjMsKTwDf+4mjWL8ftEbriMjKrBpYpaamIjY2FoGBgZDJZNi8ebOhrKKiAgkJCejZsyc8PT0RGBiIP/7xj7h27ZrRPQoKCjBx4kQoFAp4e3tj8uTJKC4uNqqTmZmJwYMHw93dHUFBQVi2bFmNtmzcuBHdu3eHu7s7evbsiZ07dzZJnxuiUidgzvcn6qwz9/sT9U7fFVgQWDHjOpEZ/IeKAdbYq0DrLsZlP0aIAdavK63TNiKyCqsGViUlJejduzdWrqz5D8+tW7dw7NgxzJs3D8eOHcP333+PM2fO4PHHjdc4TJw4ESdPnkRSUhK2b9+O1NRUTJ061VCu1WoxatQodOzYEenp6Xj//fexcOFCfP7554Y6Bw4cwIQJEzB58mQcP34cY8eOxdixY5GVldV0nbfAwd9uoPBWRZ11bt6qwMHfbtRZx9x0C94eLsy4TmSJVoHA42eB8eXA/S8blx2NFwOsfeOBSvP/c0NE9kkmCLaR+U4mk2HTpk0YO3ZsrXWOHDmCAQMG4OLFi+jQoQNOnTqFkJAQHDlyBP369QMAJCYmYsyYMbhy5QoCAwOxatUq/OUvf4FarYarqxhYzJkzB5s3b8bp0+KhrM8++yxKSkqwfft2w3sNHDgQYWFhWL16tcm2lJWVoazs3j+SWq0WQUFB0Gg0UCgUjf3jMPKPXWew4qdz9daLG9YZg7q0Q35RKfy8xONoqmZOTzt/AxO+qH96YmbkA3gjsmuj2kzU4p3/P+DQ5JrXPQKAUWmAZ8fmbxMR1aDVaqFUKiX7/rarNVYajQYymQze3t4AgLS0NHh7exuCKgCIjIyEXC7HoUOHDHWGDBliCKoAICoqCmfOnMHNmzcNdSIjI43eKyoqCmlpabW2ZfHixVAqlYZHUFCQVN2sQWfmDr0v9+VgwhcH8caGDEz44iAGLU02Wns1INgHAcq6p/i8W7kgfniXOusQkRk6vyxOE0YfM75+OxfY0kkcxcr90SpNI6KmYzeBVWlpKRISEjBhwgRDRKlWq+Hn52dUz9nZGT4+PlCr1YY6/v7+RnX0z+uroy83Ze7cudBoNIbH5cuXG9fBOhTeLjer3q0KndFztaYU06osbHeSy7AgNgR17Q1c8lRPng9IJCWfh+4em1MAtB1oXPZTlBhgnVjEY3OIHIRdBFYVFRV45plnIAgCVq1aZe3mAADc3NygUCiMHk3lelHD1mXo/5letC3bsLA9OjQAq57vU2PkKkDpjtU8H5Co6bi2AaLSxGNzerxlXHZioXhszp5IoIIJeonsmc3nsdIHVRcvXkRycrJRAKNSqZCfn29U/86dOygoKIBKpTLUycvLM6qjf15fHX25tXm6NfxjEgDkakqN8lJFhwZgZIgKh3MKkF9UCt/WboAA/F5ShrTzN2qszSIiCcnkwEPvi4/Lm4Cfn7pXlrcH2KgA5K7A6AxA2cNqzSSihrHpESt9UHX27Fns3r0bbdsaJ6yMiIhAYWEh0tPTDdeSk5Oh0+kQHh5uqJOamoqKinu76pKSktCtWze0adPGUGfPnj1G905KSkJERERTdc0i4x5q3+h7VM9L5SSXIaJzW7g5y/HWxl8w8d+Hal2bRURNJOhJcZrwsV8Blyqj3rpyYEeIOE148VvrtY+ILGbVwKq4uBgZGRnIyMgAAOTk5CAjIwOXLl1CRUUFnn76aRw9ehRff/01KisroVaroVarUV4urjnq0aMHoqOjMWXKFBw+fBj79+9HfHw8xo8fj8DAQADAc889B1dXV0yePBknT57EN998g48//hizZs0ytOONN95AYmIi/vnPf+L06dNYuHAhjh49ivj4+Gb/MzHl4a6+aOXq1Kh7+LZ2q3EtMSsX09YeQ66mWtLRamuzqmvMsTpEZIKiK/AHjXhsTuBjxmX7nxUDrKOv89gcIjtg1XQLKSkpGDZsWI3rkyZNwsKFCxEcHGzydT/99BMeffRRAGKC0Pj4eGzbtg1yuRzjxo3D8uXL0bp1a0P9zMxMxMXF4ciRI/D19cX06dORkJBgdM+NGzfinXfewYULF9C1a1csW7YMY8aMMbsvUm/XrE6feb2hvp4cjke6+hqeV+oEDFqaXCOo0pMBUCndsS9huNG0YGJWLhZtyzZ6XYDSHQtixWN1KnWCYYrRVMoHIjKDIACnlgEZc2qWtQkDhiUB7r41y4jIYlJ/f9tMHit719SBFSAGNQu2ZCGv6N4uQYW7E7Sl9f8v9uPxYXgi7D7Dc3NzWq2fMtCwNks/wlX9B0YfNk0dEoytv+TWGnQRUQPk/QTsGW66bNQhwHdA87aHyMFI/f1t84vX6Z7qi879vNyh0wmY+O9D9b62+hE15p4FqK9XqROwaFt2jaAKuLf78LPUnBpl+mnFVdxxSNQw/sPEdVi3rgK7hwDFv90r+1FcS4r+q4Cur1qnfURkhIGVndEvOter1AkIULpDrSk1GfTop/SqH1Fj7lmA+nqHcwpqnTasi3C3DYu2ZWNkiMpoWpDThkQWaHUf8Ph5oLIcODwFyPnPvbIj08RHx+eAgV8CTuYdX0VE0mNgZef0ST+nrT0GGWAUXOlDlAWxITUCFn0WdnMDMnNHuEypmvJhQLAPDucUIClbjc0Z11BQcm9ak9OGRGZwcgUivhIf574ADt87GxUX14mPVkHAyP2AZ9OdCEFEptl0ugUyjz7pp6pa0k+V0r3WKTh9QAagRiZ2UwGZuSNcddmdrcagpcmY8MVB/N/+C0ZBFVD/bsTG4E5Gckhdptw9Nueo8fVbl4EtHcTdhOrd1mkbUQvFxesSaY7F6/VpyNRafbv8qt570NLkWke4pFLbbsTGMLePRHav7Abw02ig4EjNsl5/BR78MyDjdDtRVdwVaKNsIbBqKHMDMv2uQAAWB1dyGWDJIFHV3YiNUd9ORksX1XNdGNkFQQccnw2c/qBmmWoUMPh/gEvrmmVELRADKxtlz4GVJUyN/jSF6ukhGqKhubpqI+XIFwM0ajaX/gfse7rmdScPYPRxQNGt+dtEZEOYboGsqmrKB7W2FO9tP4mCkopa68tlwKSIjvjywEWL3keKNV317WQ0dY5ibWob+WpIOglrTU0ymGuhOowT12FpzwCJfYE7JeL1ytvA9u7i7wdtBDqYCL6IyGIMrMhiVVM+eLjI65weXDHhIbTxdDM7sKotPURDWJqrqzb15fCqLZ2EKVIGaJZwtHVmDBIbQNENeKYYqCgG9v0ByE28V7bvD+Kv3WYAff4pHhRNRA3Cvz3UKLXtSAxQumP1830wplegIbVDfV97daWHaAhLc3XVxpKRr7qYk2R10bZsyXcsNvRMSFuVmJVr2F3Kg8MbwKU1MOwHYIIO6P1347IzHwHrnYDEfuJCeCKyGAMrarTo0ADsSxiO9VMG4uPxYVg/ZSD2JQw3jITUldqhqrrSQzREfQGdDGIAWN/omFQjX1IFaJawVjDXVBwtSLQqmQx4cK44TTi8WkqGgnTgf75iuoYbR02/nohM4lQgSaJ6Rvjq9CNb1aejfDxd8GTYfYgMUUk+ndPQ5KnVSTXyJVWAZgkp15lZm7lTsl5uLvi9pIxThJZQjbh7bM4V4MdHgFuX7pXt6i/+OuBzMW8WEdWJgRU1G1NnHTb1F19tAZ3KgvVFlmapr425AZpvazez6pnDGsFcUzE3SKx6dqY9ryOzilbtgbEXxWNzDk0GLqy9V3Z4qvjo9DwQ/m8em0NUC6ZbkEhLSbdgrxq72Lm2HF6W5MMyN8mqSuGGhY8/2OBgoGpffy8qw3s7TtX7GqnyhjWlLRlX8caGDIte09B8ZVTF2c+AIyYOePbsBIzcJ55hSGTHmMfKRjGwcnxS7KwzJ8lqY4IBU22sKzlrU2S6bypp529gwhcHLX6dPfXRpt04AuwaYLps+B5ANbx520MkEQZWNoqBVcsgxTb/xKxcLNyaDbW29mmthgQDtaVyqOs9APsZzWnssUr2MCpnF0p/B36KAm4eq1nW++9AyBwem0N2Rervb+4KJLKAfpH+E2H3IaJz2waNgESHBuCff+hdZx1LdwjWtbBbr3pTpd6F2dTM3V1aG3tYR2YX3H2B0enA+DtAtzeMy375M7BeDqTE3EtEStTCcPE6kRX8XlJmVj1zg4H6FnYD4nTgvJge8PVys9sdc7VtRjCHlJsCbIVVE6XKnYC+H4mPi98C+5+9V3ZtJ/Bta8C5NRCdDigeaJ42EdkABlZEViBVCgc9cwMwXy+3Rp/BaG3Vd5fma8vwt531L9Bv0PxhE5FqStlmsul3fEZ8aE4BiX2AyrttulMMbL97FuHg74GgJ5u3XURWwMCKyAqkSuGgJ3WgZuuq5k3bknHVrNeYO0rY1KTcBNHcRyPVS9kDePa2eGzOz08B6qR7ZT8/Jf7a/U3goWU8NoccFn+yiaygrvVCDTnaR6os8/bInoJKKTLH20U2fZfWwPAfxWNzer5rXHb6n+KxObvCgTLLTxmo1AlIO38DWzKuIu38Dbs5NYBaDgZWRFZS2zmLDVlULnWgZk/sJaiUKiCyxtFIDSaTAT3niVndh+0yLrtxGPhfW/HYnAITOwxN4DmRjsuRAmZOBRJZkZTZ6KXIMm+PpDq6qKlJdbyQ3WbTDxglBlgll4AfHwZuV5nCTewr/hr+b6DzyyZfbrPTnzbCqhsZGsmm1gtKgIEVkZXVd86iJaxxbJAtsIegUqqAyJ6mPk3y7AA8eQWoLAMOvgRcXH+v7NBk8XH/i+LZhHIXAOafEzkyROXwP+umNGdgInUA54gBMwMrIgcjZaBmT2w9qJQqIJJ644PVOLkBj6wTH79+ChyNu1f22xrx0fp+IPJnHM51c5jDxKXWnIGJ1AFcpU7Awq2OFzBzjRUROQwpErg2FanWgjnkeroHXhOnCUdVO7Ko+Ddg832IOOSLcM8T9d7G5qY/m1hzbmSQYuNFdSuSz9Z5AkXVgNme1mAxsCIiagZSBkRSbnywKb7hYoD1VD7gbXw6wTed5+JCr8cwtd3/UFtSsuae/rT2l70UGxnM6UNTBHCJWbn4cPdZs+ruzlbb1aYFnhUoEZ4VSETmkHI6xZ4XLJtFVwkcmwH8uqJG0W5tf8RfTECp4G6Vg7ZtYcH1loyreGNDRr31Ph4fZjIxsLl9MPcAdHPP49Sf+2np6QlVSXnWqdTf31xjRUTUjKRcC+bw6+nkTkC/T4B+nyBj3yqEXXrNUBSpOILTPZ+GttITj5/9EHNiH2vWoMoWFlw3Zt2eJX2QeieqOUdw6cll4nFc1dnyGixOBRIRNTNbXgtmq8IGTUNir2t47tq/UK67NyagcCpBSvepiM4MBK5safJ22FKC1oau2zO3D+V3dEg7fwNn84rMao/UR3ABpoMqPZvK2VYFAysiIrIL0aEB+O+sl5EeocaObqehUQw2rpA6Vkw4ejwBEHRN0gZbStDa0HV75vZh4OLdmPDFQaz46Xyd7bA0Ca+5AdjoUH+z6tnapgUGVkREErP2omZHph/ti+nbDcrHUu8em7PQuNKpZeKxOT8+DJQXSvr+tpagtSEbGcxtW0FJRb11muIILgBQKdzwfHgns+5naznbuMaKiEhCtrCouUWRyYCeC8THtV1ASvS9st/TgO/aiL8ffRxoE9bot7PFBK2WrtuTsm0NScJrzmkJCx9/EAM7t7XLnG3cFSgR7gqklsrhd6ZZoLYFwVLuYCIzFF8Akh4GbpvYjj/wSzGzewPpd7TV92XfnDsULVVfH8wRP6wLHuni26i/7+b8J0T/dwowHYDZ4q5ABlYSYWBFLRFHZ+6pbwu5PXzhOpzKUiBtEnDp25plnScD/VcZjs2xRHN82Te12vpgrtpSOFjKnP+YNfW/MwysbBQDK7InUowycXTGmNS5fkhiZz4B0l+ved3rASByL+Chsuh2jvCfClN9aOvpihsl5fW+trl/jptyZJx5rIioUaT4QuChuDXZ2qJmqqbbdPFxPU2cJtQr+hXYdPfnPjIV8Bts+vXV2PrZlOYw1Ye+Hdtg6Ps/2dy6JnvK2cZdgUQtiBTnfVXqBKzZn2MzW85thS0uaiYT2kXcPTYnD1CGGpftHiKmazj1AWDGZI4j5COr3gdXZ7njnUXZzBhYEVnIXrfSS5HYMDErF4OWJuO9HafMes+WNDoj1SHL1Ezc/YCYE8D4CqDra8Zlx98E1suB1CeBO7et0z4rctizKJuJVQOr1NRUxMbGIjAwEDKZDJs3bzYqFwQB8+fPR0BAADw8PBAZGYmzZ40PbSwoKMDEiROhUCjg7e2NyZMno7i42KhOZmYmBg8eDHd3dwQFBWHZsmU12rJx40Z0794d7u7u6NmzJ3bu3Cl5f8n+6QMLezkMtKrGJjasbbSrLi1pdEbKQ5apGcmdgf4rxVGsiLXGZVc2A9+2Ar5rCxT/ZpXmWUt0aAD2JQzH+ikD8fH4MKyfMhD7EoYzqDKDVQOrkpIS9O7dGytXrjRZvmzZMixfvhyrV6/GoUOH4OnpiaioKJSW3vuHfeLEiTh58iSSkpKwfft2pKamYurUqYZyrVaLUaNGoWPHjkhPT8f777+PhQsX4vPPPzfUOXDgACZMmIDJkyfj+PHjGDt2LMaOHYusrKym6zzZrNpGpKSYRrOmxqwBqmu0y5SWOjrD/+nbueCJYoA15gQgq/L1WF4AbO0sThNe3W699jUzR5jqtAab2RUok8mwadMmjB07FoA4WhUYGIg333wTb731FgBAo9HA398fa9aswfjx43Hq1CmEhITgyJEj6NevHwAgMTERY8aMwZUrVxAYGIhVq1bhL3/5C9RqNVxdXQEAc+bMwebNm3H69GkAwLPPPouSkhJs337vL8zAgQMRFhaG1atXm9V+7gp0DLUt7J4X0wPv7ThV52hNW09XpM0dAVdn25xhb8yuNXNfC7TcXYFVMbeXg6jQAnsfB/L31iwLmQv0/puYoJTsmtTf37b5DQAgJycHarUakZGRhmtKpRLh4eFIS0sDAKSlpcHb29sQVAFAZGQk5HI5Dh06ZKgzZMgQQ1AFAFFRUThz5gxu3rxpqFP1ffR19O9jSllZGbRardGD7FtdI1KvrTte7xTYjZJyDFy8u9EjV021hqsxa4AsWSvF0Rn+T99huCiAyBTx2JwH3zEuy14srsNKGgyUa6zSPLJNNptuQa1WAwD8/Y0PYfT39zeUqdVq+Pn5GZU7OzvDx8fHqE5wcHCNe+jL2rRpA7VaXef7mLJ48WIsWrSoAT0jW2TOwm5zFJRUYNraYw0OLGofMQtBG0/XRo2AmHOMRG1rgMxdKzUvpgdefCSYgQQ5FpkM6P2e+Li6E9gbc6/s+j7gO2/x96N/Adr0skoTyXbY7IiVrZs7dy40Go3hcfnyZWs3iRqhvoXdlqpvd50ptY2Y5WpK8dq6Y5IsmG/oGiBzR7sYVJHDu2+MuA7r8d/EnYVV/dBbXIeV81/rtI1sgs2OWKlUYhbcvLw8BATc+8c+Ly8PYWFhhjr5+flGr7tz5w4KCgoMr1epVMjLyzOqo39eXx19uSlubm5wc3NrQM/I2kytf5EyLUDV3XXmJrSzdHG4fsF8Q0bGGpLYsDGjXUQOqXWwmAurshQ48Dxw+X/3ytL+KD66TAX6rRR3HlKLYbMjVsHBwVCpVNizZ4/hmlarxaFDhxAREQEAiIiIQGFhIdLT0w11kpOTodPpEB4ebqiTmpqKiooKQ52kpCR069YNbdq0MdSp+j76Ovr3IcdRW7qEC7+XSP5elgRrlo6YmZt3qjYNWQPEHW9EJji5A4O/E0ex+nxoXHbuc2CDC7C9B3A7z/TryeFYNYwuLi7GuXPnDM9zcnKQkZEBHx8fdOjQATNmzMBf//pXdO3aFcHBwZg3bx4CAwMNOwd79OiB6OhoTJkyBatXr0ZFRQXi4+Mxfvx4BAYGAgCee+45LFq0CJMnT0ZCQgKysrLw8ccf48MP7/0FeOONNzB06FD885//RExMDDZs2ICjR48apWQg+1fb2XZqTSk+3H0W3q1coLlVUe+okUxmVlJmi3I4NWTErCEjY43lCMd4EDWZ7jPEx/X9QNKge9e1p4FNd2dARu4D2j1ijdZRM7FqYHX06FEMGzbM8HzWrFkAgEmTJmHNmjV4++23UVJSgqlTp6KwsBCDBg1CYmIi3N3vfWF9/fXXiI+Px4gRIyCXyzFu3DgsX77cUK5UKvHjjz8iLi4Offv2ha+vL+bPn2+U6+rhhx/GunXr8M477+DPf/4zunbtis2bNyM0tNpxB2S3zDnbTq/6VFeN+vUEVabO0qpv+31jEmk2d3Zzezqzi8gq2j0ijmDdVgN7hgPaKicV6AOuPh8B3d+wSvOoadlMHit7xzxWts3cPEwzIx/AhiOXzJ6Wq229UdWpMXMOPa7UCRi0NLnWg0/r0tynzBORhXR3gKNx4tRgdUFPAQ9/LU4pklW0mDxWRFIyd1Snk28r7EsYjnkxPcyq38bT1eh59fVG5mZrr+s4lNq01OzmRHZH7gwM+OzusTn/MS67/D3wjQfwPz+gOMc67SNJcasCtQjmTrX5ebnDSS6Dr5d5Oz7nxfSASulhcorPnOnHRduyMTJEBSe5zLA4vProlinciUdkp4JfEB83M8X0DHpl14Gt94u/H7pDTOtAdomBFbUI+jxMtU21VV8XZW4gplJ61DoNZ8mhx/p7mFocfrOkrMZxOqpqU4lEZGfa9BJHsMoLxWNzrv98r0yfgPTBd4Be7/LYHDvDwIpaBEvzMFkaiJnS0EOPTS0OjwoN4E48Ikfk6g2MTBV3xWS+A5z8+72yk38VH35DgKHbxCN2yOZxjRW1GJbkYaprzZO503CWTD/Wh2fPETk4mUw81Pk5QQyiqspPBTYqgfVOQGGWddpHZuOuQIlwV6D9qC/1QVXm7Oir633q2umnH/XalzCcgRIR1VR0HvgxHCi7UbPs4a+BTs81f5sckNTf3wysJMLAynFZEohVp98VCNSfloGIyKQ7t4EDzwFXNtcs6/Iq0O8THpvTCAysbBQDK6pNY0a9iIiMnP4QODar5nVlKDBiT82DoaleDKxsFAMrqktjRr2IiGrITwV2DzVdNvIA0I5n3ZqLgZWNYmBFRETN7nYusPtRoOjXmmV9PwG6xTd7k+wNM68TERGRyCMAiD0DjC8HOr9iXJY+HVgnA/Y9A1Q275miLRkDKyIiInsndwHCvxDTNQxcY1x2aaN4bM73AUDJRas0ryVhYEVERORI7p8kBlijjxtfL1UDWzqJo1jXEq3StJaAgRUREZEjahMmBlhP3wR8HzYuSxktBliZC8Ws7yQZBlZERESOzNUbGLUfmFAJhCQYl2UtAtbLgT0jgIoiqzTP0TCwIiIiaglkciBsiTiKNWSzcVleMrBRAax3ATTZVmmeo2BgRURE1NK0f0IMsGLPAi7e964Ld4AdD4rThBe/sVrz7BkDKyIiopbKqwvwh5vAMyXAfbHGZfvHiwHW0emArtI67bNDDKyIiIhaOudWwNCtwAQdELbMuOzXFcAGZ2Bnb6D0unXaZ0cYWBEREZFIJgNCZovThCNSjMsKM4Hv/cRRrN8PW6N1doGBFREREdXkP1QMsMZeBVp3Ni77MVwMsM6usk7bbBgDKyIiIqpdq0Dg8XPisTn3v2hcduQ1McDaPwGoLLNK82wNAysiIiKqn9wFGPilOIoV/i/jsosbgG/cgU3tgZJL1mmfjWBgRURERJbpPFkMsKLTja/fvgps6SiOYuUmWadtVsbAioiIiBrGp48YYI27AbQdYFz20ygxwDrxXos6NoeBFRERETWOmw8QdUg8NqfHW8ZlJ+aLx+YkjwIqiq3TvmbEwIqIiIikIZMDD70vjmIN/t64TJ0EbPQCvvEANKet075mwMCKiIiIpBf0pBhgPXYGcPa6d72yFNjRQ5wmvLTReu1rIgysiIiIqOkoHgCe0QLPFAOBY4zL9j0jBljpMxzm2BwGVkRERNT0nD2BR3fcPTZniXHZmY/FY3N+6AuU3bBO+yTCwIqIiIiaj0wGhCTcPTYn2bjs5jHgf77iKNaNI9ZpXyMxsCIiIiLr8B9299icy4BnJ+OyXQPuHpvzmVWa1lAMrIiIiMi6WrUHnsgBni0Dgv9oXHbkVTHAOvA8UFlunfZZgIEVERER2QYnVyDiK3EUa8DnxmUXvga+cbNOuyzAwIqIiIhsT5cpYoAVVWWtlVs767XHTM7WbgARERFRrdr2EwMsO8ERKyIiIiKJMLAiIiIikggDKyIiIiKJMLAiIiIikohNB1aVlZWYN28egoOD4eHhgc6dO+O9996DINxbxCYIAubPn4+AgAB4eHggMjISZ8+eNbpPQUEBJk6cCIVCAW9vb0yePBnFxcVGdTIzMzF48GC4u7sjKCgIy5Yta5Y+EhERkeOw6cBq6dKlWLVqFVasWIFTp05h6dKlWLZsGT755BNDnWXLlmH58uVYvXo1Dh06BE9PT0RFRaG0tNRQZ+LEiTh58iSSkpKwfft2pKamYurUqYZyrVaLUaNGoWPHjkhPT8f777+PhQsX4vPPq+XQICIiIqqDTKg6/GNjHnvsMfj7++Pf//634dq4cePg4eGBtWvXQhAEBAYG4s0338Rbb70FANBoNPD398eaNWswfvx4nDp1CiEhIThy5Aj69esHAEhMTMSYMWNw5coVBAYGYtWqVfjLX/4CtVoNV1dXAMCcOXOwefNmnD592mTbysrKUFZWZniu1WoRFBQEjUYDhULRVH8kREREJCGtVgulUinZ97dNj1g9/PDD2LNnD3799VcAwC+//IJ9+/Zh9OjRAICcnByo1WpERkYaXqNUKhEeHo60tDQAQFpaGry9vQ1BFQBERkZCLpfj0KFDhjpDhgwxBFUAEBUVhTNnzuDmzZsm27Z48WIolUrDIygoSNrOExERkd2x6QShc+bMgVarRffu3eHk5ITKykr87W9/w8SJEwEAarUaAODv72/0On9/f0OZWq2Gn5+fUbmzszN8fHyM6gQHB9e4h76sTZs2Ndo2d+5czJo1y/BcP2JFRERELZdNB1bffvstvv76a6xbtw4PPvggMjIyMGPGDAQGBmLSpElWbZubmxvc3Gz/zCIiIiJqPjYdWM2ePRtz5szB+PHjAQA9e/bExYsXsXjxYkyaNAkqlQoAkJeXh4CAAMPr8vLyEBYWBgBQqVTIz883uu+dO3dQUFBgeL1KpUJeXp5RHf1zfR0iIiKi+tj0Gqtbt25BLjduopOTE3Q6HQAgODgYKpUKe/bsMZRrtVocOnQIERERAICIiAgUFhYiPT3dUCc5ORk6nQ7h4eGGOqmpqaioqDDUSUpKQrdu3UxOAxIRERGZYtOBVWxsLP72t79hx44duHDhAjZt2oQPPvgATz75JABAJpNhxowZ+Otf/4qtW7fixIkT+OMf/4jAwECMHTsWANCjRw9ER0djypQpOHz4MPbv34/4+HiMHz8egYGBAIDnnnsOrq6umDx5Mk6ePIlvvvkGH3/8sdEaKiIiIqL62HS6haKiIsybNw+bNm1Cfn4+AgMDMWHCBMyfP9+wg08QBCxYsACff/45CgsLMWjQIHz66ad44IEHDPcpKChAfHw8tm3bBrlcjnHjxmH58uVo3bq1oU5mZibi4uJw5MgR+Pr6Yvr06UhISDC7rVJv1yQiIqKmJ/X3t00HVvZEo9HA29sbly9fZmBFRERkJ/S7+gsLC6FUKht9P5tevG5PioqKAIApF4iIiOxQUVGRJIEVR6wkotPpcO3aNXh5eUEmk0l+f31E3RJGxFpKX1tKPwH21RG1lH4CLaevLaWfgHFfvby8UFRUhMDAwBob5hqCI1YSkcvlaN++fZO/j0KhcPgfeL2W0teW0k+AfXVELaWfQMvpa0vpJ3Cvr1KMVOnZ9K5AIiIiInvCwIqIiIhIIgys7ISbmxsWLFjQIo7RaSl9bSn9BNhXR9RS+gm0nL62lH4CTdtXLl4nIiIikghHrIiIiIgkwsCKiIiISCIMrIiIiIgkwsCKiIiISCIMrGzMwoULIZPJjB7du3c3lJeWliIuLg5t27ZF69atMW7cOOTl5VmxxeZJTU1FbGwsAgMDIZPJsHnzZqNyQRAwf/58BAQEwMPDA5GRkTh79qxRnYKCAkycOBEKhQLe3t6YPHkyiouLm7EX5qmvry+++GKNzzg6Otqojj30dfHixejfvz+8vLzg5+eHsWPH4syZM0Z1zPl5vXTpEmJiYtCqVSv4+flh9uzZuHPnTnN2pU7m9PPRRx+t8Zm++uqrRnVsvZ8AsGrVKvTq1cuQNDEiIgI//PCDodwRPk+9+vrqKJ9pdUuWLIFMJsOMGTMM1xzpc9Uz1c9m+0wFsikLFiwQHnzwQSE3N9fwuH79uqH81VdfFYKCgoQ9e/YIR48eFQYOHCg8/PDDVmyxeXbu3Cn85S9/Eb7//nsBgLBp0yaj8iVLlghKpVLYvHmz8MsvvwiPP/64EBwcLNy+fdtQJzo6Wujdu7dw8OBB4eeffxa6dOkiTJgwoZl7Ur/6+jpp0iQhOjra6DMuKCgwqmMPfY2KihK+/PJLISsrS8jIyBDGjBkjdOjQQSguLjbUqe/n9c6dO0JoaKgQGRkpHD9+XNi5c6fg6+srzJ071xpdMsmcfg4dOlSYMmWK0Weq0WgM5fbQT0EQhK1btwo7duwQfv31V+HMmTPCn//8Z8HFxUXIysoSBMExPk+9+vrqKJ9pVYcPHxY6deok9OrVS3jjjTcM1x3pcxWE2vvZXJ8pAysbs2DBAqF3794mywoLCwUXFxdh48aNhmunTp0SAAhpaWnN1MLGqx5s6HQ6QaVSCe+//77hWmFhoeDm5iasX79eEARByM7OFgAIR44cMdT54YcfBJlMJly9erXZ2m6p2gKrJ554otbX2Gtf8/PzBQDC3r17BUEw7+d1586dglwuF9RqtaHOqlWrBIVCIZSVlTVvB8xUvZ+CIP6DXfUf8OrssZ96bdq0Ef71r3857OdZlb6vguB4n2lRUZHQtWtXISkpyahvjva51tZPQWi+z5RTgTbo7NmzCAwMxP3334+JEyfi0qVLAID09HRUVFQgMjLSULd79+7o0KED0tLSrNXcRsvJyYFarTbql1KpRHh4uKFfaWlp8Pb2Rr9+/Qx1IiMjIZfLcejQoWZvc2OlpKTAz88P3bp1w7Rp03Djxg1Dmb32VaPRAAB8fHwAmPfzmpaWhp49e8Lf399QJyoqClqtFidPnmzG1puvej/1vv76a/j6+iI0NBRz587FrVu3DGX22M/Kykps2LABJSUliIiIcNjPE6jZVz1H+kzj4uIQExNj9PkBjvf3tLZ+6jXHZ8pDmG1MeHg41qxZg27duiE3NxeLFi3C4MGDkZWVBbVaDVdXV3h7exu9xt/fH2q12joNloC+7VV/mPXP9WVqtRp+fn5G5c7OzvDx8bG7vkdHR+Opp55CcHAwzp8/jz//+c8YPXo00tLS4OTkZJd91el0mDFjBh555BGEhoYCgFk/r2q12uTnri+zNab6CQDPPfccOnbsiMDAQGRmZiIhIQFnzpzB999/D8C++nnixAlERESgtLQUrVu3xqZNmxASEoKMjAyH+zxr6yvgWJ/phg0bcOzYMRw5cqRGmSP9Pa2rn0DzfaYMrGzM6NGjDb/v1asXwsPD0bFjR3z77bfw8PCwYstIKuPHjzf8vmfPnujVqxc6d+6MlJQUjBgxwoota7i4uDhkZWVh37591m5Kk6qtn1OnTjX8vmfPnggICMCIESNw/vx5dO7cubmb2SjdunVDRkYGNBoNvvvuO0yaNAl79+61drOaRG19DQkJcZjP9PLly3jjjTeQlJQEd3d3azenyZjTz+b6TDkVaOO8vb3xwAMP4Ny5c1CpVCgvL0dhYaFRnby8PKhUKus0UAL6tlffhVK1XyqVCvn5+Ubld+7cQUFBgV33HQDuv/9++Pr64ty5cwDsr6/x8fHYvn07fvrpJ7Rv395w3ZyfV5VKZfJz15fZktr6aUp4eDgAGH2m9tJPV1dXdOnSBX379sXixYvRu3dvfPzxxw73eQK199UUe/1M09PTkZ+fjz59+sDZ2RnOzs7Yu3cvli9fDmdnZ/j7+zvE51pfPysrK2u8pqk+UwZWNq64uBjnz59HQEAA+vbtCxcXF+zZs8dQfubMGVy6dMloXYC9CQ4OhkqlMuqXVqvFoUOHDP2KiIhAYWEh0tPTDXWSk5Oh0+kMfzns1ZUrV3Djxg0EBAQAsJ++CoKA+Ph4bNq0CcnJyQgODjYqN+fnNSIiAidOnDAKJJOSkqBQKAxTMtZWXz9NycjIAACjz9TW+1kbnU6HsrIyh/k866Lvqyn2+pmOGDECJ06cQEZGhuHRr18/TJw40fB7R/hc6+unk5NTjdc02Wdq+Zp7akpvvvmmkJKSIuTk5Aj79+8XIiMjBV9fXyE/P18QBHFbbIcOHYTk5GTh6NGjQkREhBAREWHlVtevqKhIOH78uHD8+HEBgPDBBx8Ix48fFy5evCgIgphuwdvbW9iyZYuQmZkpPPHEEybTLTz00EPCoUOHhH379gldu3a1uRQEglB3X4uKioS33npLSEtLE3JycoTdu3cLffr0Ebp27SqUlpYa7mEPfZ02bZqgVCqFlJQUo+3Lt27dMtSp7+dVv7151KhRQkZGhpCYmCi0a9fOprZx19fPc+fOCe+++65w9OhRIScnR9iyZYtw//33C0OGDDHcwx76KQiCMGfOHGHv3r1CTk6OkJmZKcyZM0eQyWTCjz/+KAiCY3yeenX11ZE+U1Oq745zpM+1qqr9bM7PlIGVjXn22WeFgIAAwdXVVbjvvvuEZ599Vjh37pyh/Pbt28Jrr70mtGnTRmjVqpXw5JNPCrm5uVZssXl++uknAUCNx6RJkwRBEFMuzJs3T/D39xfc3NyEESNGCGfOnDG6x40bN4QJEyYIrVu3FhQKhfDSSy8JRUVFVuhN3erq661bt4RRo0YJ7dq1E1xcXISOHTsKU6ZMMdreKwj20VdTfQQgfPnll4Y65vy8XrhwQRg9erTg4eEh+Pr6Cm+++aZQUVHRzL2pXX39vHTpkjBkyBDBx8dHcHNzE7p06SLMnj3bKD+OINh+PwVBEF5++WWhY8eOgqurq9CuXTthxIgRhqBKEBzj89Srq6+O9JmaUj2wcqTPtaqq/WzOz1QmCIJg/vgWEREREdWGa6yIiIiIJMLAioiIiEgiDKyIiIiIJMLAioiIiEgiDKyIiIiIJMLAioiIiEgiDKyIiIiIJMLAioiIiEgiDKyIiGzAiy++iLFjx1q7GUTUSAysiMimvfjii5DJZFiyZInR9c2bN0Mmk1mpVQ134cIFyGQywwGwRORYGFgRkc1zd3fH0qVLcfPmTWs3hYioTgysiMjmRUZGQqVSYfHixbXW2bdvHwYPHgwPDw8EBQXh9ddfR0lJCQBgxYoVCA0NNdTVj3atXr3a6D3eeecdw/Nt27ahf//+cHd3h6+vL5588klD2X//+1/069cPXl5eUKlUeO6555Cfn28ov3nzJiZOnIh27drBw8MDXbt2xZdffgkACA4OBgA89NBDkMlkePTRR032R6fTYfHixQgODoaHhwd69+6N7777zoI/NSKyBgZWRGTznJyc8Pe//x2ffPIJrly5UqP8/PnziI6Oxrhx45CZmYlvvvkG+/btQ3x8PABg6NChyM7OxvXr1wEAe/fuha+vL1JSUgAAFRUVSEtLMwQ5O3bswJNPPokxY8bg+PHj2LNnDwYMGGB4v4qKCrz33nv45ZdfsHnzZly4cAEvvviioXzevHnIzs7GDz/8gFOnTmHVqlXw9fUFABw+fBgAsHv3buTm5uL777832efFixfjP//5D1avXo2TJ09i5syZeP7557F3795G/VkSURMTiIhs2KRJk4QnnnhCEARBGDhwoPDyyy8LgiAImzZtEvT/hE2ePFmYOnWq0et+/vlnQS6XC7dv3xZ0Op3Qtm1bYePGjYIgCEJYWJiwePFiQaVSCYIgCPv27RNcXFyEkpISQRAEISIiQpg4caLZbTxy5IgAQCgqKhIEQRBiY2OFl156yWTdnJwcAYBw/PjxWvtZWloqtGrVSjhw4IBRncmTJwsTJkwwu11E1Pw4YkVEdmPp0qX46quvcOrUKaPrv/zyC9asWYPWrVsbHlFRUdDpdMjJyYFMJsOQIUOQkpKCwsJCZGdn47XXXkNZWRlOnz6NvXv3on///mjVqhUAICMjAyNGjKi1Henp6YiNjUWHDh3g5eWFoUOHAgAuXboEAJg2bRo2bNiAsLAwvP322zhw4IBF/Tx37hxu3bqFkSNHGvXpP//5D86fP2/RvYioeTlbuwFEROYaMmQIoqKiMHfuXKOpt+LiYvzpT3/C66+/XuM1HTp0AAA8+uij+Pzzz/Hzzz/joYcegkKhMARbe/fuNQRHAODh4VFrG0pKShAVFYWoqCh8/fXXaNeuHS5duoSoqCiUl5cDAEaPHo2LFy9i586dSEpKwogRIxAXF4d//OMfZvWzuLgYgDgled999xmVubm5mXUPIrIOBlZEZFeWLFmCsLAwdOvWzXCtT58+yM7ORpcuXWp93dChQzFjxgxs3LjRsJbq0Ucfxe7du7F//368+eabhrq9evXCnj178NJLL9W4z+nTp3Hjxg0sWbIEQUFBAICjR4/WqNeuXTtMmjQJkyZNwuDBgzF79mz84x//gKurKwCgsrKy1raGhITAzc0Nly5dMgr4iMj2MbAiIrvSs2dPTJw4EcuXLzdcS0hIwMCBAxEfH49XXnkFnp6eyM7ORlJSElasWAFADJbatGmDdevWYfv27QDEwOqtt96CTCbDI488YrjfggULMGLECHTu3Bnjx4/HnTt3sHPnTiQkJKBDhw5wdXXFJ598gldffRVZWVl47733jNo4f/589O3bFw8++CDKysqwfft29OjRAwDg5+cHDw8PJCYmon379nB3d4dSqTR6vZeXF9566y3MnDkTOp0OgwYNgkajwf79+6FQKDBp0qQm+bMlosbjGisisjvvvvsudDqd4XmvXr2wd+9e/Prrrxg8eDAeeughzJ8/H4GBgYY6MpkMgwcPhkwmw6BBgwyvUygU6NevHzw9PQ11H330UWzcuBFbt25FWFgYhg8fbtjN165dO6xZswYbN25ESEgIlixZUmOKz9XVFXPnzkWvXr0wZMgQODk5YcOGDQAAZ2dnLF++HJ999hkCAwPxxBNPmOzje++9h3nz5mHx4sXo0aMHoqOjsWPHDkO6BiKyTTJBEARrN4KIiIjIEXDEioiIiEgiDKyIiIiIJMLAioiIiEgiDKyIiIiIJMLAioiIiEgiDKyIiIiIJMLAioiIiEgiDKyIiIiIJMLAioiIiEgiDKyIiIiIJMLAioiIiEgi/w+1ydlDBHZ9gAAAAABJRU5ErkJggg==",
2786
+ "text/plain": [
2787
+ "<Figure size 640x480 with 1 Axes>"
2788
+ ]
2789
+ },
2790
+ "metadata": {},
2791
+ "output_type": "display_data"
2792
+ }
2793
+ ],
2794
  "source": [
2795
  "def myfunc(x):\n",
2796
  " return slope * x + intercept\n",