{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import os\n", "\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import plotly.express as px\n", "from scipy import stats" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "df = {}\n", "\n", "csv_file = \"coal_price_data.csv\"\n", "csv_date = \"date\"\n", "csv_file = csv_file.split(\".\")[0]\n", "df[csv_file] = pd.read_csv(f\"../coal-price-data/{csv_file}.csv\")\n", "df[csv_file][\"datetime\"] = pd.to_datetime(df[csv_file][csv_date], format=\"%b-%y\")\n", "\n", "csv_path = \"../coal-price-data/fred/\"\n", "csv_date = \"DATE\"\n", "csv_date_start = \"2011-11-01\"\n", "csv_date_end = \"2023-12-01\"\n", "csv_list = os.listdir(csv_path)\n", "for csv_file in csv_list:\n", " csv_file = csv_file.split(\".\")[0]\n", " df[csv_file] = pd.read_csv(f\"../coal-price-data/fred/{csv_file}.csv\")\n", " df[csv_file][\"datetime\"] = pd.to_datetime(df[csv_file][csv_date], format=\"%Y-%m-%d\")\n", " df[csv_file] = df[csv_file].loc[\n", " (df[csv_file][\"datetime\"] >= csv_date_start) & (df[csv_file][\"datetime\"] < csv_date_end)\n", " ]" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
DATEM2SLdatetime
6342011-11-019612.62011-11-01
6352011-12-019660.12011-12-01
6362012-01-019733.32012-01-01
6372012-02-019785.72012-02-01
6382012-03-019830.62012-03-01
............
7742023-07-0120863.82023-07-01
7752023-08-0120825.62023-08-01
7762023-09-0120755.42023-09-01
7772023-10-0120725.72023-10-01
7782023-11-0120767.52023-11-01
\n", "

145 rows × 3 columns

\n", "
" ], "text/plain": [ " DATE M2SL datetime\n", "634 2011-11-01 9612.6 2011-11-01\n", "635 2011-12-01 9660.1 2011-12-01\n", "636 2012-01-01 9733.3 2012-01-01\n", "637 2012-02-01 9785.7 2012-02-01\n", "638 2012-03-01 9830.6 2012-03-01\n", ".. ... ... ...\n", "774 2023-07-01 20863.8 2023-07-01\n", "775 2023-08-01 20825.6 2023-08-01\n", "776 2023-09-01 20755.4 2023-09-01\n", "777 2023-10-01 20725.7 2023-10-01\n", "778 2023-11-01 20767.5 2023-11-01\n", "\n", "[145 rows x 3 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[\"M2SL\"]" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "year 2011\n", "date Apr-12\n", "newcastle 48.8\n", "HBA 49.42\n", "ICI_1 52.93\n", "datetime 2011-12-01 00:00:00\n", "dtype: object\n", "year 2023\n", "date Sep-23\n", "newcastle 433.7\n", "HBA 330.97\n", "ICI_1 277.62\n", "datetime 2023-12-01 00:00:00\n", "dtype: object\n", "DATE 2011-11-01\n", "M2SL 9612.6\n", "datetime 2011-11-01 00:00:00\n", "dtype: object\n", "DATE 2023-11-01\n", "M2SL 21703.5\n", "datetime 2023-11-01 00:00:00\n", "dtype: object\n" ] } ], "source": [ "print(df[\"coal_price_data\"].min())\n", "print(df[\"coal_price_data\"].max())\n", "print(df[\"M2SL\"].min())\n", "print(df[\"M2SL\"].max())" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "hovertemplate": "datetime=%{x}
newcastle=%{y}", "legendgroup": "", "line": { "color": "#636efa", "dash": "solid" }, "marker": { "symbol": "circle" }, "mode": "lines", "name": "", "orientation": "v", "showlegend": false, "type": "scatter", "x": [ "2023-12-01T00:00:00", "2023-11-01T00:00:00", "2023-10-01T00:00:00", "2023-09-01T00:00:00", "2023-08-01T00:00:00", "2023-07-01T00:00:00", "2023-06-01T00:00:00", "2023-05-01T00:00:00", "2023-04-01T00:00:00", "2023-03-01T00:00:00", "2023-02-01T00:00:00", "2023-01-01T00:00:00", "2022-12-01T00:00:00", "2022-11-01T00:00:00", "2022-10-01T00:00:00", "2022-09-01T00:00:00", "2022-08-01T00:00:00", "2022-07-01T00:00:00", "2022-06-01T00:00:00", "2022-05-01T00:00:00", "2022-04-01T00:00:00", "2022-03-01T00:00:00", "2022-02-01T00:00:00", "2022-01-01T00:00:00", "2021-12-01T00:00:00", "2021-11-01T00:00:00", "2021-10-01T00:00:00", "2021-09-01T00:00:00", "2021-08-01T00:00:00", "2021-07-01T00:00:00", "2021-06-01T00:00:00", "2021-05-01T00:00:00", "2021-04-01T00:00:00", "2021-03-01T00:00:00", "2021-02-01T00:00:00", "2021-01-01T00:00:00", "2020-12-01T00:00:00", "2020-11-01T00:00:00", "2020-10-01T00:00:00", "2020-09-01T00:00:00", "2020-08-01T00:00:00", "2020-07-01T00:00:00", "2020-06-01T00:00:00", "2020-05-01T00:00:00", "2020-04-01T00:00:00", "2020-03-01T00:00:00", "2020-02-01T00:00:00", "2020-01-01T00:00:00", "2019-12-01T00:00:00", "2019-11-01T00:00:00", "2019-10-01T00:00:00", "2019-09-01T00:00:00", "2019-08-01T00:00:00", "2019-07-01T00:00:00", "2019-06-01T00:00:00", "2019-05-01T00:00:00", "2019-04-01T00:00:00", "2019-03-01T00:00:00", "2019-02-01T00:00:00", "2019-01-01T00:00:00", "2018-12-01T00:00:00", "2018-11-01T00:00:00", "2018-10-01T00:00:00", "2018-09-01T00:00:00", "2018-08-01T00:00:00", "2018-07-01T00:00:00", "2018-06-01T00:00:00", "2018-05-01T00:00:00", "2018-04-01T00:00:00", "2018-03-01T00:00:00", "2018-02-01T00:00:00", "2018-01-01T00:00:00", "2017-12-01T00:00:00", "2017-11-01T00:00:00", "2017-10-01T00:00:00", "2017-09-01T00:00:00", "2017-08-01T00:00:00", "2017-07-01T00:00:00", "2017-06-01T00:00:00", "2017-05-01T00:00:00", "2017-04-01T00:00:00", "2017-03-01T00:00:00", "2017-02-01T00:00:00", "2017-01-01T00:00:00", "2016-12-01T00:00:00", "2016-11-01T00:00:00", "2016-10-01T00:00:00", "2016-09-01T00:00:00", "2016-08-01T00:00:00", "2016-07-01T00:00:00", "2016-06-01T00:00:00", "2016-05-01T00:00:00", "2016-04-01T00:00:00", "2016-03-01T00:00:00", "2016-02-01T00:00:00", "2016-01-01T00:00:00", "2015-12-01T00:00:00", "2015-11-01T00:00:00", "2015-10-01T00:00:00", "2015-09-01T00:00:00", "2015-08-01T00:00:00", "2015-07-01T00:00:00", "2015-06-01T00:00:00", "2015-05-01T00:00:00", "2015-04-01T00:00:00", "2015-03-01T00:00:00", "2015-02-01T00:00:00", "2015-01-01T00:00:00", "2014-12-01T00:00:00", "2014-11-01T00:00:00", "2014-10-01T00:00:00", "2014-09-01T00:00:00", "2014-08-01T00:00:00", "2014-07-01T00:00:00", "2014-06-01T00:00:00", "2014-05-01T00:00:00", "2014-04-01T00:00:00", "2014-03-01T00:00:00", "2014-02-01T00:00:00", "2014-01-01T00:00:00", "2013-12-01T00:00:00", "2013-11-01T00:00:00", "2013-10-01T00:00:00", "2013-09-01T00:00:00", "2013-08-01T00:00:00", "2013-07-01T00:00:00", "2013-06-01T00:00:00", "2013-05-01T00:00:00", "2013-04-01T00:00:00", "2013-03-01T00:00:00", "2013-02-01T00:00:00", "2013-01-01T00:00:00", "2012-12-01T00:00:00", "2012-11-01T00:00:00", "2012-10-01T00:00:00", "2012-09-01T00:00:00", "2012-08-01T00:00:00", "2012-07-01T00:00:00", "2012-06-01T00:00:00", "2012-05-01T00:00:00", "2012-04-01T00:00:00", "2012-03-01T00:00:00", "2012-02-01T00:00:00", "2012-01-01T00:00:00", "2011-12-01T00:00:00" ], "xaxis": "x", "y": [ 146.25, 132.15, 121.1, 160.01, 156, 137.3, 128.05, 135, 189.7, 177.25, 192.85, 251.75, 404.15, 398.5, 356.3, 433.7, 425, 407.9, 385.95, 427, 326.6, 259, 274.5, 222.75, 169.6, 152, 223.45, 218, 174.25, 149.75, 134.7, 118.9, 93.3, 96.25, 85.1, 86.2, 80.5, 70.3, 58.2, 58.6, 51.95, 51.95, 52.15, 52, 52.35, 67.85, 67.4, 68.5, 67.7, 67.85, 66.9, 70.05, 65.75, 69.45, 70.9, 83.4, 87.3, 92.75, 96.05, 99, 102.05, 101.7, 105.2, 113.85, 118, 117.55, 114.4, 110.15, 99.4, 96.4, 104.25, 104.35, 100.8, 96.8, 99.9, 97.25, 95.3, 93.2, 81, 73.45, 83.55, 80.75, 83.45, 83, 88.4, 87.45, 108.6, 72.2, 68.75, 61.15, 56.95, 53.5, 50.75, 51.1, 50.5, 48.8, 50.6, 53.55, 53.05, 53.85, 58.5, 60.3, 60.8, 60.05, 62.05, 56.8, 71.05, 62.45, 62.3, 63.45, 64.3, 64.65, 69.25, 68.95, 71.1, 73.9, 73.35, 74.55, 77.55, 82.35, 87.25, 84.55, 84.15, 79.15, 78.55, 77.05, 83, 87.7, 87, 90.65, 94.25, 95.2, 93.75, 85.9, 83.6, 89.5, 91.75, 90.15, 88.4, 91.45, 100.75, 107, 112.1, 117.45, 112.25 ], "yaxis": "y" } ], "layout": { "font": { "size": 18 }, "height": 400, "legend": { "tracegroupgap": 0 }, "margin": { "t": 60 }, "template": { "data": { "bar": [ { "error_x": { "color": "rgb(36,36,36)" }, "error_y": { "color": "rgb(36,36,36)" }, "marker": { "line": { "color": "white", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "white", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "rgb(36,36,36)", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "rgb(36,36,36)" }, "baxis": { "endlinecolor": "rgb(36,36,36)", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "rgb(36,36,36)" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "line": { "color": "white", "width": 0.6 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "rgb(237,237,237)" }, "line": { "color": "white" } }, "header": { "fill": { "color": "rgb(217,217,217)" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "colorscale": { "diverging": [ [ 0, "rgb(103,0,31)" ], [ 0.1, "rgb(178,24,43)" ], [ 0.2, "rgb(214,96,77)" ], [ 0.3, "rgb(244,165,130)" ], [ 0.4, "rgb(253,219,199)" ], [ 0.5, "rgb(247,247,247)" ], [ 0.6, "rgb(209,229,240)" ], [ 0.7, "rgb(146,197,222)" ], [ 0.8, "rgb(67,147,195)" ], [ 0.9, "rgb(33,102,172)" ], [ 1, "rgb(5,48,97)" ] ], "sequential": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "sequentialminus": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ] }, "colorway": [ "#1F77B4", "#FF7F0E", "#2CA02C", "#D62728", "#9467BD", "#8C564B", "#E377C2", "#7F7F7F", "#BCBD22", "#17BECF" ], "font": { "color": "rgb(36,36,36)" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "white", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "white", "polar": { "angularaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "bgcolor": "white", "radialaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" } }, "scene": { "xaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "yaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "zaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" } }, "shapedefaults": { "fillcolor": "black", "line": { "width": 0 }, "opacity": 0.3 }, "ternary": { "aaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "baxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "bgcolor": "white", "caxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside", "title": { "standoff": 15 }, "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "yaxis": { "automargin": true, "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside", "title": { "standoff": 15 }, "zeroline": false, "zerolinecolor": "rgb(36,36,36)" } } }, "title": { "text": "Coal Price", "x": 0.5 }, "width": 650, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "title": { "text": "datetime" } }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "newcastle" } } } } }, "metadata": {}, "output_type": "display_data" } ], "source": [ "y = \"newcastle\"\n", "fig = px.line(df[\"coal_price_data\"], x=\"datetime\", y=y, labels={\"Month\": \"Date\"})\n", "fig.update_layout(\n", " template=\"simple_white\",\n", " font=dict(size=18),\n", " title_text=\"Coal Price\",\n", " width=650,\n", " title_x=0.5,\n", " height=400,\n", ")\n", "fig.show()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "hovertemplate": "datetime=%{x}
M2SL=%{y}", "legendgroup": "", "line": { "color": "#636efa", "dash": "solid" }, "marker": { "symbol": "circle" }, "mode": "lines", "name": "", "orientation": "v", "showlegend": false, "type": "scatter", "x": [ "2011-11-01T00:00:00", "2011-12-01T00:00:00", "2012-01-01T00:00:00", "2012-02-01T00:00:00", "2012-03-01T00:00:00", "2012-04-01T00:00:00", "2012-05-01T00:00:00", "2012-06-01T00:00:00", "2012-07-01T00:00:00", "2012-08-01T00:00:00", "2012-09-01T00:00:00", "2012-10-01T00:00:00", "2012-11-01T00:00:00", "2012-12-01T00:00:00", "2013-01-01T00:00:00", "2013-02-01T00:00:00", "2013-03-01T00:00:00", "2013-04-01T00:00:00", "2013-05-01T00:00:00", "2013-06-01T00:00:00", "2013-07-01T00:00:00", "2013-08-01T00:00:00", "2013-09-01T00:00:00", "2013-10-01T00:00:00", "2013-11-01T00:00:00", "2013-12-01T00:00:00", "2014-01-01T00:00:00", "2014-02-01T00:00:00", "2014-03-01T00:00:00", "2014-04-01T00:00:00", "2014-05-01T00:00:00", "2014-06-01T00:00:00", "2014-07-01T00:00:00", "2014-08-01T00:00:00", "2014-09-01T00:00:00", "2014-10-01T00:00:00", "2014-11-01T00:00:00", "2014-12-01T00:00:00", "2015-01-01T00:00:00", "2015-02-01T00:00:00", "2015-03-01T00:00:00", "2015-04-01T00:00:00", "2015-05-01T00:00:00", "2015-06-01T00:00:00", "2015-07-01T00:00:00", "2015-08-01T00:00:00", "2015-09-01T00:00:00", "2015-10-01T00:00:00", "2015-11-01T00:00:00", "2015-12-01T00:00:00", "2016-01-01T00:00:00", "2016-02-01T00:00:00", "2016-03-01T00:00:00", "2016-04-01T00:00:00", "2016-05-01T00:00:00", "2016-06-01T00:00:00", "2016-07-01T00:00:00", "2016-08-01T00:00:00", "2016-09-01T00:00:00", "2016-10-01T00:00:00", "2016-11-01T00:00:00", "2016-12-01T00:00:00", "2017-01-01T00:00:00", "2017-02-01T00:00:00", "2017-03-01T00:00:00", "2017-04-01T00:00:00", "2017-05-01T00:00:00", "2017-06-01T00:00:00", "2017-07-01T00:00:00", "2017-08-01T00:00:00", "2017-09-01T00:00:00", "2017-10-01T00:00:00", "2017-11-01T00:00:00", "2017-12-01T00:00:00", "2018-01-01T00:00:00", "2018-02-01T00:00:00", "2018-03-01T00:00:00", "2018-04-01T00:00:00", "2018-05-01T00:00:00", "2018-06-01T00:00:00", "2018-07-01T00:00:00", "2018-08-01T00:00:00", "2018-09-01T00:00:00", "2018-10-01T00:00:00", "2018-11-01T00:00:00", "2018-12-01T00:00:00", "2019-01-01T00:00:00", "2019-02-01T00:00:00", "2019-03-01T00:00:00", "2019-04-01T00:00:00", "2019-05-01T00:00:00", "2019-06-01T00:00:00", "2019-07-01T00:00:00", "2019-08-01T00:00:00", "2019-09-01T00:00:00", "2019-10-01T00:00:00", "2019-11-01T00:00:00", "2019-12-01T00:00:00", "2020-01-01T00:00:00", "2020-02-01T00:00:00", "2020-03-01T00:00:00", "2020-04-01T00:00:00", "2020-05-01T00:00:00", "2020-06-01T00:00:00", "2020-07-01T00:00:00", "2020-08-01T00:00:00", "2020-09-01T00:00:00", "2020-10-01T00:00:00", "2020-11-01T00:00:00", "2020-12-01T00:00:00", "2021-01-01T00:00:00", "2021-02-01T00:00:00", "2021-03-01T00:00:00", "2021-04-01T00:00:00", "2021-05-01T00:00:00", "2021-06-01T00:00:00", "2021-07-01T00:00:00", "2021-08-01T00:00:00", "2021-09-01T00:00:00", "2021-10-01T00:00:00", "2021-11-01T00:00:00", "2021-12-01T00:00:00", "2022-01-01T00:00:00", "2022-02-01T00:00:00", "2022-03-01T00:00:00", "2022-04-01T00:00:00", "2022-05-01T00:00:00", "2022-06-01T00:00:00", "2022-07-01T00:00:00", "2022-08-01T00:00:00", "2022-09-01T00:00:00", "2022-10-01T00:00:00", "2022-11-01T00:00:00", "2022-12-01T00:00:00", "2023-01-01T00:00:00", "2023-02-01T00:00:00", "2023-03-01T00:00:00", "2023-04-01T00:00:00", "2023-05-01T00:00:00", "2023-06-01T00:00:00", "2023-07-01T00:00:00", "2023-08-01T00:00:00", "2023-09-01T00:00:00", "2023-10-01T00:00:00", "2023-11-01T00:00:00" ], "xaxis": "x", "y": [ 9612.6, 9660.1, 9733.3, 9785.7, 9830.6, 9884.6, 9928.4, 9999.3, 10051.8, 10121.3, 10200.8, 10267.3, 10337.6, 10459.7, 10482.9, 10501.3, 10558.3, 10586.3, 10621, 10678.7, 10718.4, 10776.6, 10837.2, 10961.6, 10969.7, 11035, 11080.8, 11178.8, 11208.1, 11257.7, 11321, 11374.9, 11429.9, 11458.9, 11499.8, 11566, 11604.8, 11684.9, 11745.6, 11879, 11886.8, 11928.9, 11957.9, 12001.7, 12051.3, 12101.9, 12160.8, 12195.9, 12284.6, 12346.8, 12469.9, 12556.7, 12616.7, 12700.4, 12766.2, 12829.4, 12887.7, 12972.8, 13033.6, 13100.5, 13173.4, 13213.4, 13283.4, 13358.8, 13426.9, 13484.9, 13538.1, 13559.2, 13618.7, 13673.7, 13717.9, 13770.1, 13799.9, 13857.9, 13869.7, 13912.3, 13970.2, 13988.8, 14047.2, 14103.6, 14139.2, 14181.3, 14212.9, 14222.5, 14236.8, 14362.7, 14430, 14469.9, 14509.9, 14541, 14643.2, 14757.7, 14840.6, 14914.6, 15008.1, 15140.8, 15242.2, 15320.7, 15396, 15450.3, 15978.7, 16997.6, 17851.1, 18131.7, 18286.3, 18346, 18577.3, 18729.1, 18949.3, 19114.6, 19357.5, 19600.6, 19840.8, 20116.8, 20431.1, 20506.7, 20663.1, 20847.8, 20964.3, 21115.6, 21315.7, 21549.3, 21562.3, 21570.7, 21697.8, 21677.2, 21665.5, 21666.1, 21703.5, 21659.6, 21525.1, 21433.2, 21399.3, 21358.3, 21221.7, 21099.8, 20876, 20705.4, 20820.8, 20854.5, 20863.8, 20825.6, 20755.4, 20725.7, 20767.5 ], "yaxis": "y" } ], "layout": { "font": { "size": 18 }, "height": 400, "legend": { "tracegroupgap": 0 }, "margin": { "t": 60 }, "template": { "data": { "bar": [ { "error_x": { "color": "rgb(36,36,36)" }, "error_y": { "color": "rgb(36,36,36)" }, "marker": { "line": { "color": "white", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "white", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "rgb(36,36,36)", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "rgb(36,36,36)" }, "baxis": { "endlinecolor": "rgb(36,36,36)", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "rgb(36,36,36)" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "line": { "color": "white", "width": 0.6 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "rgb(237,237,237)" }, "line": { "color": "white" } }, "header": { "fill": { "color": "rgb(217,217,217)" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "colorscale": { "diverging": [ [ 0, "rgb(103,0,31)" ], [ 0.1, "rgb(178,24,43)" ], [ 0.2, "rgb(214,96,77)" ], [ 0.3, "rgb(244,165,130)" ], [ 0.4, "rgb(253,219,199)" ], [ 0.5, "rgb(247,247,247)" ], [ 0.6, "rgb(209,229,240)" ], [ 0.7, "rgb(146,197,222)" ], [ 0.8, "rgb(67,147,195)" ], [ 0.9, "rgb(33,102,172)" ], [ 1, "rgb(5,48,97)" ] ], "sequential": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "sequentialminus": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ] }, "colorway": [ "#1F77B4", "#FF7F0E", "#2CA02C", "#D62728", "#9467BD", "#8C564B", "#E377C2", "#7F7F7F", "#BCBD22", "#17BECF" ], "font": { "color": "rgb(36,36,36)" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "white", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "white", "polar": { "angularaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "bgcolor": "white", "radialaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" } }, "scene": { "xaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "yaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "zaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" } }, "shapedefaults": { "fillcolor": "black", "line": { "width": 0 }, "opacity": 0.3 }, "ternary": { "aaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "baxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "bgcolor": "white", "caxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside", "title": { "standoff": 15 }, "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "yaxis": { "automargin": true, "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside", "title": { "standoff": 15 }, "zeroline": false, "zerolinecolor": "rgb(36,36,36)" } } }, "title": { "text": "M2SL", "x": 0.5 }, "width": 650, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "title": { "text": "datetime" } }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "M2SL" } } } } }, "metadata": {}, "output_type": "display_data" } ], "source": [ "y = \"M2SL\"\n", "fig = px.line(df[y], x=\"datetime\", y=y, labels={\"Month\": \"Date\"})\n", "fig.update_layout(\n", " template=\"simple_white\",\n", " font=dict(size=18),\n", " title_text=y,\n", " width=650,\n", " title_x=0.5,\n", " height=400,\n", ")\n", "fig.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "x = df[\"coal_price_data\"].newcastle\n", "y = df[\"coal_price_data\"].ICI_1\n", "\n", "slope, intercept, r, p, std_err = stats.linregress(x, y)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "slope: 0.600533935403765\n", "intercept: 33.65381401159914\n", "r: 0.9606500704209069\n", "p: 1.9310655623962052e-81\n", "std_err: 0.01452032511898455\n" ] } ], "source": [ "print(f\"slope: {slope}\")\n", "print(f\"intercept: {intercept}\")\n", "print(f\"r: {r}\")\n", "print(f\"p: {p}\")\n", "print(f\"std_err: {std_err}\")" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "x = df[\"coal_price_data\"][\"newcastle\"]\n", "y = df[\"M2SL\"][\"M2SL\"]\n", "\n", "slope, intercept, r, p, std_err = stats.linregress(x, y)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "slope: -20.46182026230733\n", "intercept: 17246.85603449831\n", "r: -0.4331490046040797\n", "p: 5.279632704944257e-08\n", "std_err: 3.5605661278914575\n" ] } ], "source": [ "print(f\"slope: {slope}\")\n", "print(f\"intercept: {intercept}\")\n", "print(f\"r: {r}\")\n", "print(f\"p: {p}\")\n", "print(f\"std_err: {std_err}\")" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAGwCAYAAABrUCsdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABt/ElEQVR4nO3de1yUVf4H8M8Md5EZRISBRCU1lVDJG1JeUlFQoizb0qy1Mt0MLLUM3c1b7a6XdruYptXuL9s1tWzzbhhKSCreUEJETQ3vDJjIDKBcZJ7fH48zMjDADDwwFz7v12teOs8588w5Djpfz+V7ZIIgCCAiIiKiRpNbuwFEREREjoKBFREREZFEGFgRERERSYSBFREREZFEGFgRERERSYSBFREREZFEGFgRERERScTZ2g1wFDqdDteuXYOXlxdkMpm1m0NERERmEAQBRUVFCAwMhFze+PEmBlYSuXbtGoKCgqzdDCIiImqAy5cvo3379o2+DwMriXh5eQEQPxiFQmHl1hAREZE5tFotgoKCDN/jjcXASiL66T+FQsHAioiIyM5ItYyHi9eJiIiIJMLAioiIiEgiDKyIiIiIJGLVwGrx4sXo378/vLy84Ofnh7Fjx+LMmTOG8oKCAkyfPh3dunWDh4cHOnTogNdffx0ajcboPpcuXUJMTAxatWoFPz8/zJ49G3fu3DGqk5KSgj59+sDNzQ1dunTBmjVrarRn5cqV6NSpE9zd3REeHo7Dhw83Sb+JiIjIMVk1sNq7dy/i4uJw8OBBJCUloaKiAqNGjUJJSQkAMYXBtWvX8I9//ANZWVlYs2YNEhMTMXnyZMM9KisrERMTg/Lychw4cABfffUV1qxZg/nz5xvq5OTkICYmBsOGDUNGRgZmzJiBV155Bbt27TLU+eabbzBr1iwsWLAAx44dQ+/evREVFYX8/Pzm+wMhIiIiuyYTBEGwdiP0rl+/Dj8/P+zduxdDhgwxWWfjxo14/vnnUVJSAmdnZ/zwww947LHHcO3aNfj7+wMAVq9ejYSEBFy/fh2urq5ISEjAjh07kJWVZbjP+PHjUVhYiMTERABAeHg4+vfvjxUrVgAQE34GBQVh+vTpmDNnTo12lJWVoayszPBcv11To9FwVyAREZGd0Gq1UCqVkn1/29QaK/0Un4+PT511FAoFnJ3FTBFpaWno2bOnIagCgKioKGi1Wpw8edJQJzIy0ug+UVFRSEtLAwCUl5cjPT3dqI5cLkdkZKShTnWLFy+GUqk0PJgclIiIiGwmsNLpdJgxYwYeeeQRhIaGmqzz+++/47333sPUqVMN19RqtVFQBcDwXK1W11lHq9Xi9u3b+P3331FZWWmyjv4e1c2dOxcajcbwuHz5smUdJiIiIodjMwlC4+LikJWVhX379pks12q1iImJQUhICBYuXNi8jTPBzc0Nbm5u1m4GERER2RCbCKzi4+Oxfft2pKammjynp6ioCNHR0fDy8sKmTZvg4uJiKFOpVDV27+Xl5RnK9L/qr1Wto1Ao4OHhAScnJzg5OZmso78HAZU6AYdzCpBfVAo/L3cMCPaBk7xmplpz6xERETkaqwZWgiBg+vTp2LRpE1JSUhAcHFyjjlarRVRUFNzc3LB161a4u7sblUdEROBvf/sb8vPz4efnBwBISkqCQqFASEiIoc7OnTuNXpeUlISIiAgAgKurK/r27Ys9e/Zg7NixAMSpyT179iA+Pl7qbtudSp2AFcln8eX+Cyi8XWG4HqB0x7yYHmjj6WYIom6WlOPd7dlQa0sN9fy93PBceAd08vVkoEVERA7NqrsCX3vtNaxbtw5btmxBt27dDNeVSiU8PDyg1WoxatQo3Lp1C5s2bYKnp6ehTrt27eDk5ITKykqEhYUhMDAQy5Ytg1qtxgsvvIBXXnkFf//73wGI6RZCQ0MRFxeHl19+GcnJyXj99dexY8cOREVFARDTLUyaNAmfffYZBgwYgI8++gjffvstTp8+XWPtlSlS7yqwFYlZuZjz/QkU3qqov7KZApTuWBAbgujQAMnuSURE1BBSf39bNbCq7cDDL7/8Ei+++CJSUlIwbNgwk3VycnLQqVMnAMDFixcxbdo0pKSkwNPTE5MmTcKSJUsMOwcBMUHozJkzkZ2djfbt22PevHl48cUXje65YsUKvP/++1Cr1QgLC8Py5csRHh5uVl8cMbBKzMrFtLXHIPUPiP5TX/V8HwZXRERkVQ4VWDkSRwusKnUCBi1NRq6mtP7KDeTt4YKVE/tg4P1tOTVIRERW4dB5rMh2HM4paNKgCgAKb1dg4r8OYdDSZCRm5TbpexERETUHBlZkUn5R0wZVVak1pZi29hiDKyIisnsMrMgkPy/3+itJRLj7WLQtG5U6zkwTEZH9YmBFJg0I9kGAsvmCKwDI1ZTicE5Bs74nERGRlBhYkUlOchkWxIY0+/smZZs+QoiIiMgeMLCiWkWHBuDT5/qgsRv2asmqYdKWjGucDiQiIrvFwIrqNKZXAFZMeKhR9/BylaO1m5NZdW+UlHM6kIiI7BYDK6rXmF6BWP18nxprrgKU7ojs0a7e12vLdCguqzT7/ZpzRyIREZGUbOIQZrJ90aEBGBmiqnG48orkc9h96rqk79WcOxKJiIikxMCKzOYklyGic1vD88SsXHy4+1dJ3yNAKQZsRERE9ohTgdQglToBC7dmS37fBbEhPN6GiIjsFgMrapAVyWeh1kq3Fsq7lQtW81BmIiKyc5wKJIuJU4BnJbmXdysXvPRwMOKHd+FIFRER2T0GVmSRSp2ARdsaPwXo3coFKyf0wcDObRlQERGRw2BgRWap1Ak4nFOA/eeuI1fT+CnAwlsVkMtlDKqIiMihMLCieiVm5WLRtmxJAqqqmK+KiIgcDQMrMkk/QpWUrcb/7b/QJO9RW74q/XtXzZfFkS0iIrIHDKyohsaOUPl7uQKQIa+orM56yafzjPJi1fbeAUp3LIgNQXRoAIMuIiKyaQysyEhiVi6mrT2GhhyDrA9vxj50H745eqXe+l/8nAO5DJg7JqTO91ZrSjFt7TFMHRKMrb/k1hp0ERERWZtMEISGfIdSNVqtFkqlEhqNBgqFwtrNaZBKnYBBS5MbPFIVoHTH470D8HlqjtmBmVwGnH5vNJzksga9tz6Y+2R8GPKKynCx4BY6+rTCCxGd4OrMNG1ERFQ3qb+/OWJFBodzChoUVMUP64JHuviib8c2GPr+TxaNdukE4L9pFxASqGzQe+vfK35DhtH1v+08hSmDg/F2dA9OHRIRUbNhYEUGlu7SkwFQKd0xc+QDcJLLkHb+RoOCo4sFt+Dr5Wbx6+qiE4DPUnPw34OXcKu80nCdU4dERNSUOFdCBrXt0jNFP+ZT9Wy/hqZP6OjTyqL3tkTVoAq4t14rMSu3Sd6PiIhaNgZWZHCzpO5dfFWplO5YVe1sv4YER3IZ8EJEJwwI9kGA0h1NPUmnnzpctC0blTouLyQiImkxsCIA4sL193acqrfeSw93wvopA7EvYXiN6TR9cGSJKYOD4eosh5NchgWx4u7A5giucjWlOJxT0MTvRERELQ0DKwJg/sL1UQ+qEFHL+X5VgyNzjOjezpBqAQCiQwOw6vk+UFULzgKU7vjTkGDIIG3QxczvREQkNS5eJwDmBxn11YsODcDMyAfw4e5f673XK4M7m3z9yBCVyZ18D3VoI+nROk21rouIiFouBlYEAPBtbd6uPHOCkfjhXbD+8EWotabXbOl3Ew4I9jFZ7iSX1cjIDpgOupJP5+GLn3PMaru5709ERNRQDKwIiVm5WLAlq956chnQt2Obeus5yWVY+PiDmLb2GAAY5bUytZvQEtWDrojObSGXiVncq65Fl8kAQRDfT8r3JyIiqgszr0vEXjOvW3qEzfopA02OJtV277rO/ZNS+R0d/pt2wSjzevLpvGZ7fyIisk/MvE6SqdQJWLQt26JM6ZYs+K5rvZTUXJ3lmDz4fqu9PxEREcDAqkVryBE2li74rm29VHOx9vsTEVHLwsCqBbNk9IkLvomIiOrHPFYtmKWjT1zwTUREVDcGVi2YucfIBJg4voaIiIhqYmDVwo3v36HOxeszI7uaPL6GiIiIauIaqxbKVCqEqpiWgIiIyHIMrFqg+nJXzYzsivjhXbmeioiIyEKcCmxh6stdJQOw4cjl5mwSERGRw7BqYLV48WL0798fXl5e8PPzw9ixY3HmzBmjOqWlpYiLi0Pbtm3RunVrjBs3Dnl5eUZ1Ll26hJiYGLRq1Qp+fn6YPXs27ty5Y1QnJSUFffr0gZubG7p06YI1a9bUaM/KlSvRqVMnuLu7Izw8HIcPH5a8z9ZWX+4qAUCuphSHcwqar1FEREQOwqqB1d69exEXF4eDBw8iKSkJFRUVGDVqFEpKSgx1Zs6ciW3btmHjxo3Yu3cvrl27hqeeespQXllZiZiYGJSXl+PAgQP46quvsGbNGsyfP99QJycnBzExMRg2bBgyMjIwY8YMvPLKK9i1a5ehzjfffINZs2ZhwYIFOHbsGHr37o2oqCjk5+c3zx9GMzE3d5UlOa6IiIhIZFNnBV6/fh1+fn7Yu3cvhgwZAo1Gg3bt2mHdunV4+umnAQCnT59Gjx49kJaWhoEDB+KHH37AY489hmvXrsHf3x8AsHr1aiQkJOD69etwdXVFQkICduzYgaysewcNjx8/HoWFhUhMTAQAhIeHo3///lixYgUAQKfTISgoCNOnT8ecOXPqbbu9nBWYdv4GJnxxsN56lpwJSEREZK+k/v62qTVWGo0GAODjI2b3Tk9PR0VFBSIjIw11unfvjg4dOiAtLQ0AkJaWhp49exqCKgCIioqCVqvFyZMnDXWq3kNfR3+P8vJypKenG9WRy+WIjIw01KmurKwMWq3W6GEP6stdJYO4I5AZ1omIiCxnM4GVTqfDjBkz8MgjjyA0NBQAoFar4erqCm9vb6O6/v7+UKvVhjpVgyp9ub6srjparRa3b9/G77//jsrKSpN19PeobvHixVAqlYZHUFBQwzrezJzkMiyIDam1XADweO8A7ggkIiJqAJsJrOLi4pCVlYUNGzZYuylmmTt3LjQajeFx+bL97KSLDg3A1CHBtZZ/npqDxKzcZmwRERGRY7CJwCo+Ph7bt2/HTz/9hPbt2xuuq1QqlJeXo7Cw0Kh+Xl4eVCqVoU71XYL65/XVUSgU8PDwgK+vL5ycnEzW0d+jOjc3NygUCqOHvajUCdj6S92B06Jt2ajU2czyOyIiIrtg1cBKEATEx8dj06ZNSE5ORnCw8ShK37594eLigj179hiunTlzBpcuXUJERAQAICIiAidOnDDavZeUlASFQoGQkBBDnar30NfR38PV1RV9+/Y1qqPT6bBnzx5DHUfClAtERERNw6qZ1+Pi4rBu3Tps2bIFXl5ehvVMSqUSHh4eUCqVmDx5MmbNmgUfHx8oFApMnz4dERERGDhwIABg1KhRCAkJwQsvvIBly5ZBrVbjnXfeQVxcHNzc3AAAr776KlasWIG3334bL7/8MpKTk/Htt99ix44dhrbMmjULkyZNQr9+/TBgwAB89NFHKCkpwUsvvdT8fzBNjCkXiIiImoZVA6tVq1YBAB599FGj619++SVefPFFAMCHH34IuVyOcePGoaysDFFRUfj0008NdZ2cnLB9+3ZMmzYNERER8PT0xKRJk/Duu+8a6gQHB2PHjh2YOXMmPv74Y7Rv3x7/+te/EBUVZajz7LPP4vr165g/fz7UajXCwsKQmJhYY0G7varUCTicU4D8olL8XlRm1mv8vNybuFVERESOxabyWNkzW85jZerAZbkMqG0JlQyASumOfQnDuTuQiIgcmtTf3zyE2cHVduByXUEVACyIDWFQRUREZCGb2BVITaO+A5cBceSqKpXSHaue74Po0IAmbRsREZEj4oiVA6tv9x8gjlzNi+kBXy83+HmJGdc5UkVERNQwDKwcmLm7+ny93PBE2H1N3BoiIiLHx6lAB2burj7u/iMiIpIGAysHpj9wuS48cJmIiEg6DKwcmJNchsd7170InQcuExERSYeBlQMz50zArb/k8kxAIiIiiTCwcmDm7ArkmYBERETSYWDlwHgmIBERUfNiYOXAuCuQiIioeTGwcmADgn3g3cql1nIZuCuQiIhISgysHFhSthqFtypqLRfAMwGJiIikxMDKQenPCayLdysXjAxRNVOLiIiIHB8DKwdlzo7AwlsV3BFIREQkIQZWDoo7AomIiJofAysHdeH3ErPqcUcgERGRdBhYOaBKnYD1hy/VW487AomIiKTFwMoBHc4pgFpbVm+98f07cEcgERGRhBhYOSBz10118m3VxC0hIiJqWRhYOSBmXCciIrIOBlYOaECwDwKUdQdNXF9FREQkPQZWDshJLsPjvQPqrPN47wCuryIiIpIYAysHVKkTsPWX3DrrbP0lF5U6oZlaRERE1DIwsHJA5mRdz9WUGmVdr9QJSDt/A1syriLt/A0GXURERA3gbO0GkPQszbqemJWLRduyjYKxAKU7FsSGIDq07ilFIiIiuocjVg7Ikl2BiVm5mLb2WI0RLrWmFNPWHkNiVt1TikRERHQPAysHpN8VWNvSdBnEEam+Hdtg0bZsmJr0019btC2b04JERERmYmDlgJzkMiyIDQGAGsGV/vmC2BCkX7xZ51osATXXYhEREVHtGFg5qOjQAKx6vg9U1fJZqZTuWPV8H0SHBli8FouIiIjqxsXrDqBSJ+BwTgHyi0rh5yUm/nSSyxAdGoCRISqTZQAztBMREUmNgZWdq2tHX11BFXBvLZZaU2pynZUM4ggXM7QTERGZh4GVHdPv6KseFKk1pXh17TF4t3JB4a0Kw/XqKRT0a7GmrT0GGWB0n6prsZihnYiIyDxcY2WnKnVCvTv6qgZVgOkUCuasxSIiIiLzcMTKTpmTXb06AeJI1KJt2RgZojKMRNW3FouIiIjMw8DKTjV0p17VFAoRndsarjvJZUbPiYiIyHKcCrRTjd2pxxQKRERE0mNgZafqy65eH6ZQICIikh4DKztVV3b1uuiPs2EKBSIiIukxsLJjte3oq4sAplAgIiJqKlYNrFJTUxEbG4vAwEDIZDJs3rzZqLy4uBjx8fFo3749PDw8EBISgtWrVxvVKS0tRVxcHNq2bYvWrVtj3LhxyMvLM6pz6dIlxMTEoFWrVvDz88Ps2bNx584dozopKSno06cP3Nzc0KVLF6xZs6Ypuiy56NAA7EsYjvhhnc2q//IjnZhCgYiIqIlYNbAqKSlB7969sXLlSpPls2bNQmJiItauXYtTp05hxowZiI+Px9atWw11Zs6ciW3btmHjxo3Yu3cvrl27hqeeespQXllZiZiYGJSXl+PAgQP46quvsGbNGsyfP99QJycnBzExMRg2bBgyMjIwY8YMvPLKK9i1a1fTdV5CTnIZHunSzqy6I0NUTdwaIiKilksmCIKpHJPNTiaTYdOmTRg7dqzhWmhoKJ599lnMmzfPcK1v374YPXo0/vrXv0Kj0aBdu3ZYt24dnn76aQDA6dOn0aNHD6SlpWHgwIH44Ycf8Nhjj+HatWvw9/cHAKxevRoJCQm4fv06XF1dkZCQgB07diArK8vwPuPHj0dhYSESExNNtresrAxlZWWG51qtFkFBQdBoNFAoFFL+0ZilUidg0NLkeo+n2ZcwnNOAREREd2m1WiiVSsm+v216jdXDDz+MrVu34urVqxAEAT/99BN+/fVXjBo1CgCQnp6OiooKREZGGl7TvXt3dOjQAWlpaQCAtLQ09OzZ0xBUAUBUVBS0Wi1OnjxpqFP1Hvo6+nuYsnjxYiiVSsMjKChIsn43RNXF7KYIAB7vHcCgioiIqAnZdGD1ySefICQkBO3bt4erqyuio6OxcuVKDBkyBACgVqvh6uoKb29vo9f5+/tDrVYb6lQNqvTl+rK66mi1Wty+fdtk2+bOnQuNRmN4XL58udH9bazo0ABMHRJca/nnqTlGx9kQERGRtGw68/onn3yCgwcPYuvWrejYsSNSU1MRFxeHwMDAGiNMzc3NzQ1ubm5WbUN1lToBW3+pO3CqfpwNERERScdmA6vbt2/jz3/+MzZt2oSYmBgAQK9evZCRkYF//OMfiIyMhEqlQnl5OQoLC41GrfLy8qBSiYu0VSoVDh8+bHRv/a7BqnWq7yTMy8uDQqGAh4dHU3VRcvWdH1jbcTZEREQkDZudCqyoqEBFRQXkcuMmOjk5QafTARAXsru4uGDPnj2G8jNnzuDSpUuIiIgAAERERODEiRPIz8831ElKSoJCoUBISIihTtV76Ovo72EvzD2mhsfZEBERNQ2rjlgVFxfj3Llzhuc5OTnIyMiAj48POnTogKFDh2L27Nnw8PBAx44dsXfvXvznP//BBx98AABQKpWYPHkyZs2aBR8fHygUCkyfPh0REREYOHAgAGDUqFEICQnBCy+8gGXLlkGtVuOdd95BXFycYSrv1VdfxYoVK/D222/j5ZdfRnJyMr799lvs2LGj+f9QGsHcY2p4nA0REVHTsGq6hZSUFAwbNqzG9UmTJmHNmjVQq9WYO3cufvzxRxQUFKBjx46YOnUqZs6cCZlMXCNUWlqKN998E+vXr0dZWRmioqLw6aefGqb5AODixYuYNm0aUlJS4OnpiUmTJmHJkiVwdnY2asvMmTORnZ2N9u3bY968eXjxxRfN7ovU2zUbgikXiIiILCP197fN5LGyd7YQWAFAYlYupq09BgBGwZU+jFr1fB9mXiciIrqrReWxIsvVdn6gSunOoIqIiKiJ2eyuQGq46NAAjAxR4XBOAfKLSuHn5Y4BwT6c/iMiImpiDKwclJNcxpQKREREzYxTgUREREQSYWBFREREJBEGVkREREQSYWBFREREJBEGVkREREQSYWBFREREJBEGVkREREQSYWBFREREJBEGVkREREQSYWBFREREJBEeaeOAKnUCzwkkIiKyAgZWDiYxKxeLtmUjV1NquBagdMeC2BBEhwZYsWVERESOj1OBDiQxKxfT1h4zCqoAQK0pxbS1x5CYlWullhEREbUMDKwcRKVOwKJt2RBMlOmvLdqWjUqdqRpEREQkBQZWDuJwTkGNkaqqBAC5mlIczilovkYRERG1MAysHER+Ue1BVUPqERERkeUYWDkIPy93SesRERGR5RhYOYgBwT4IULqjtqQKMoi7AwcE+zRns4iIiFoUBlYOwkkuw4LYEACoEVzpny+IDWE+KyIioibEwMqBRIcGYNXzfaBSGk/3qZTuWPV8H+axIiIiamJMEOpgokMDMDJExczrREREVsDAygE5yWWI6NzW2s0gIiJqcTgVSERERCQRBlZEREREEmFgRURERCQRBlZEREREEmFgRURERCQRBlZEREREEmFgRURERCQRBlZEREREEmFgRURERCQRBlZEREREEmFgZet0lUD2+8DuocBttbVbQ0RERHXgWYG27tZlIONt8febAsRfI38G/AZZr01ERERkEkesbF3rTkCn542v7R4MrJMBpz+0SpOIiIjINAZW9uDh/wLjK4Cu04yvH5slBlipTwJ3bqNSJyDt/A1sybiKtPM3UKkTrNNeIiKiFsqqgVVqaipiY2MRGBgImUyGzZs316hz6tQpPP7441AqlfD09ET//v1x6dIlQ3lpaSni4uLQtm1btG7dGuPGjUNeXp7RPS5duoSYmBi0atUKfn5+mD17Nu7cuWNUJyUlBX369IGbmxu6dOmCNWvWNEWXG07uDPT/FHhOACLWGpdd2Qx82wpFX3vj7a82440NGZjwxUEMWpqMxKxcqzSXiIioJbJqYFVSUoLevXtj5cqVJsvPnz+PQYMGoXv37khJSUFmZibmzZsHd3d3Q52ZM2di27Zt2LhxI/bu3Ytr167hqaeeMpRXVlYiJiYG5eXlOHDgAL766iusWbMG8+fPN9TJyclBTEwMhg0bhoyMDMyYMQOvvPIKdu3a1XSdb4zgiWKANSYTkN37CL2dtPi5+yu40OsxDPM6ArWmFNPWHmNwRURE1ExkgiDYxHyRTCbDpk2bMHbsWMO18ePHw8XFBf/9739Nvkaj0aBdu3ZYt24dnn76aQDA6dOn0aNHD6SlpWHgwIH44Ycf8Nhjj+HatWvw9/cHAKxevRoJCQm4fv06XF1dkZCQgB07diArK8vovQsLC5GYmGhW+7VaLZRKJTQaDRQKRQP/FCxXqRMQtWwr/urzDga2zqpRvjLvGawtnYJ9CSPgJJc1W7uIiIjsgdTf3za7xkqn02HHjh144IEHEBUVBT8/P4SHhxtNF6anp6OiogKRkZGGa927d0eHDh2QlpYGAEhLS0PPnj0NQRUAREVFQavV4uTJk4Y6Ve+hr6O/hyllZWXQarVGD2s4nFOAc4XOGP/bEnTK3Iblec8alcf5f4u0jiNRsuNhoFxjlTYSERG1FDYbWOXn56O4uBhLlixBdHQ0fvzxRzz55JN46qmnsHfvXgCAWq2Gq6srvL29jV7r7+8PtVptqFM1qNKX68vqqqPVanH79m2T7Vu8eDGUSqXhERQU1Og+N0R+UWmVZzJ8kPcCOmVux4s5C4zqKYoOAt95i4vdC080axuJiIhaCpsNrHQ6HQDgiSeewMyZMxEWFoY5c+bgsccew+rVq63cOmDu3LnQaDSGx+XLl63SDj8vd5PXU4r6o1Pmdgw+/S/8fkdpXLizlxhg5aw1+VoiIiJqGJsNrHx9feHs7IyQkBCj6z169DDsClSpVCgvL0dhYaFRnby8PKhUKkOd6rsE9c/rq6NQKODh4WGyfW5ublAoFEYPaxgQ7IMApTtqWz11pVyF2Kv/Q+XTJUDQU8aFaS+IAdbhPwG6O6ZvQERERGaz2cDK1dUV/fv3x5kzZ4yu//rrr+jYsSMAoG/fvnBxccGePXsM5WfOnMGlS5cQEREBAIiIiMCJEyeQn59vqJOUlASFQmEI2iIiIozuoa+jv4ctc5LLsCBW7Ef14Er/fEFsCJxcWwGD/yfuJuxTLbHouc+BDS7A9hDgdh6IiIioYawaWBUXFyMjIwMZGRkAxLQHGRkZhhGp2bNn45tvvsEXX3yBc+fOYcWKFdi2bRtee+01AIBSqcTkyZMxa9Ys/PTTT0hPT8dLL72EiIgIDBw4EAAwatQohISE4IUXXsAvv/yCXbt24Z133kFcXBzc3NwAAK+++ip+++03vP322zh9+jQ+/fRTfPvtt5g5c2bz/6E0QHRoAFY93wcqpfG0oErpjlXP90F0aIDxC7rPEAOskfuMr2tPAZtU4ijW9QNN22giIiJHJFjRTz/9JACo8Zg0aZKhzr///W+hS5cugru7u9C7d29h8+bNRve4ffu28Nprrwlt2rQRWrVqJTz55JNCbm6uUZ0LFy4Io0ePFjw8PARfX1/hzTffFCoqKmq0JSwsTHB1dRXuv/9+4csvv7SoLxqNRgAgaDQai14npTuVOuHAud+FzcevCAfO/S7cqdSZ98JbuYKwrbsgfI2aj1MfNW2jiYiIrEjq72+byWNl76yVx0pSujvA0ThxarC6oHHAw2sBJ9OL5YmIiOxRi8ljRVYgdwYGfCZOEw78yrjs8v+AbzyA7/2B4gtWaR4REZGtY2BFpt3/RzHAGp1hfL00H9gaLK7DuvaDVZpGRERkqxhY2alKnYC08zewJeMq0s7fQKWuiWZ02/QWA6ynbwLtBhmXpYwRA6zM+QBnlImIiGznrEB715xrrHZm5uKdLVkoKCk3XAtQumNBbEjNHYBSE3TAL+8A2Ytrlvk9CgzdArjY6RozIiJqcWx2jdX58+cxfPhwqW5HtVi8MxuvrTtmFFQBQK6mFNPWHkNiVm7TNkAmB8L+Lo5iDdlqXJafAmxUAuudgMKaB0ITERE5OskCq+LiYsMZftQ0dmZew2epObWWCwAWbctuumnB6trHigFW7DnA1adKQ3TAzp7iNOGFdc3TFiIiIhvgbG7F5cuX11l+9erVRjeGalepE/DOlvpHgXI1pTicU4CIzm2boVV3eXUGnr4B3LkNHJgAXNlyr+zARPHRdRrQd7m485CIiMhBmf0tN2PGDAQEBMDV1dVkeXl5ucnrJI2Dv91AQUmFWXXzi0qbuDW1cPYAhmwWF7Kf/hA4/ua9srOrxIcyFBixB3D3s04biYiImpDZgVXHjh2xdOlSPPPMMybLMzIy0LdvX8kaRvckZuUi4X+ZZtf387JyEk+ZDOgxS3zkpwK7h94r02SJubAAYOQBoJ3tn8dIRERkLrPXWPXt2xfp6em1lstkMnCDofR2Zubi1bXHoLl9x6z6CndnDAj2qb9ic/EbIq7DevIa4PWAcVnSw+I6rDMrrNM2IiIiiZkdWL377rv4wx/+UGt5SEgIcnJqX1hNltuZeQ3x649Z9Jpxfe6Dk1zWRC1qBI8AIPYMML4c6DzZuCx9uhhg7XsWqCyzTvuIiIgkwDxWEpE6D0ZiljhSZan1UwY278L1xvhtDXDwpZrX3VVA1EHAs2OzN4mIiFoWm81jRdKp1AlYtC3b4tcFKN1taxqwPve/ePfYnOPG10vVwJZOd4/N2WWNlhERETUIAysbdDinALkay3b2yQAsiA2xzWnA+rQJu3tsTgHgW20xe0r03WNzFvLYHCIisnkMrGyQpekSApTuWPV8n6Y/zqapubYBRh0AJlQCPd42LstaBKyXA3tGABVF1mkfERFRPRhY2SBL0iXE9lJhX8Jw+w+qqpLJgYeW3j02Z7NxWV4ysFEBbHAFNJZPlxIRETUlBlY2aECwDwKU7jBnUm/fuRtN3h6rav/E3WNzzgIu3veu6yqAHQ+K04QXv7Fa84iIiKoye1dgfUfa6L3++uuNapC9suauwJmRXfFG5AP1V3QEd26JaRmuba9Z1vE5IOIrHptDRERmk/r72+zAKjg4uP6byWT47bffGt0oeyT1BwMA7247if/bf6Heet4eLkifN9I+F643lCAAp/4BZLxtuvyJC0zXQERE9bJaYEV1a4rAKu38DUz44qBZde0qf5XU8lKAPcNMlw3+HxD0VLM2h4iI7AfzWLUgfTu2MWudFQDszlY3aVtsmv+j4jqsx07XLPt5nLgO6+DLzd4sIiJqecwOrJKTkxESEgKtVlujTKPR4MEHH0RqaqqkjWvp0i/ehLnDif/efwGJWblN2h6bp+gmBljP3hZTN1T125digLXBVVynRURE1ATMDqw++ugjTJkyxeQwmVKpxJ/+9Cd8+OGHkjaupbM0n9Wc709g/9nfUalr4bO7Tu5istHnBKDra8ZlugrgW08xyCrMsk77iIjIYZkdWP3yyy+Ijo6utXzUqFFIT0+XpFEksiSfFQAU3qrAxH8fwqClyRy90uu/UgywhprYRbizpxhgnf2s+dtFREQOyezAKi8vDy4uLrWWOzs74/r165I0ikSW5LOqSq0pxbS1x/Dx7rPYknEVaedvcBTrvhgxwBp7pWbZkVfFACt5JI/NISKiRjE74c99992HrKwsdOnSxWR5ZmYmAgIcKPu3DXCSy7AgNgTTzMxnpacPDT7c/avhWoDSHQtiQ4wytFfqBBzOKUB+USn8vMQDnB0+ZUOr+8QAS1cJJD4EFJ64V6beLR6bAwDjbgBudnSgNRER2QSz0y1Mnz4dKSkpOHLkCNzdjaeobt++jQEDBmDYsGFmJxJ1NE2RbkEvMSsXC7dmQ621bM1VVfpwSX+mYGJWLhZtyzY67FmlcMeEAR3QybdVywm0ACDrb0DmO6bLIn8G/AY1b3uIiKjZWC2PVV5eHvr06QMnJyfEx8ejW7duAIDTp09j5cqVqKysxLFjx+Dv79/oRtmjpgysAHF0aUXyWXy4+2yD7yEDoFK6Y15MD8StO17vjkNTo1y2oklG266nAUkPmy7ruRDouaBx9yciIptj1QShFy9exLRp07Br1y7oXyaTyRAVFYWVK1ealZ3dUTV1YKVnaqTJUj6eLigoqai3XvVRLlth6s9A0iCwvBD4ro3pMkU3YEwWj80hInIQNpF5/ebNmzh37hwEQUDXrl3Rpk0tX0ItSHMFVoA4WnPwtxuI+/oYCm/XHyA1hn6Ua1/CcLNHhJpy7VZiVi6mrT1WY7StSYJAQQD2PgZc22m6/IlLgGeQNO9FRERWYROBFdXUnIGVnj7IAGB2ItGGMvfInKYcTarUCRi0NLnW0bqGBIFmO/9v4NArpsuGbAbaPyHt+xERUbOQ+vvb7PmMp54y77y177//vsGNIctEhwZg1fN9zJ4alAHw8XTFjZJyi9/LnGSltY0m6dM/NHY06XBOQZ39FADkakpxOKdA+nMTO08WH5pTwI4Q47LUsXfrTAHCP5f2fYmIyK6YHVgplcqmbAc1UHRoAEaGqAxTbxd+L8GHu89CBuNRLP34zXtPhOK9HdlQa0otGuWqLVmpftpPrbmN93acMnlP4e77L9qWjZEhqgaPJpmbid7SjPUWUfYQ0zXcuQ187wfcKb5Xdv4L8eHkIaZrcPZounYQEZFNMjuw+vLLL5uyHdQITnKZ0QhNN5VXzVQKVabj5HJg2tpjNYIvU/TTawOCa+Z0siQNhBSjSeZmorc0Y32DOHsAzxSJvz/8J+BclZGqytvAt63E38ecBJQhNV9PREQOiWusJGKNNVZ1qW8BuTm7C2tbEC6mfjhnlIDUXJMf6YR5sQ9a/Dr9+w5amlzraFuTrrEyx5WtQGota60GfAF0qWWNFhERWQ0Xr9soWwuszFE1+LrwewnWH74EtbbMUO7dygUvPRyM+OFdDIGKOEp10qieJXw8XXDkLyMbHPjUtmDfplJD3LoCbK5lt2BAFPDoD4CsBSReJSKyAwysbJQ9BlbV6ZOQfrn/glEaB/2uPgAmF6dbytwdhrVp8jxWUtHdAXb2ArSnapYFRAODvwOcPZu/XUREZMDAykY5QmBVV44oAeIIVuGtxufN+nh8GJ4Iu69R97C7cw5PvAucMJG53dkTiD4GKB5o/jYREREDK1tl74FVfTmipDQvpgd8vdzsIyCSmuYUkNhXXOBe3eD/AUHmpTUhIiJpSP39LZegTQ2WmpqK2NhYBAYGQiaTYfPmzbXWffXVVyGTyfDRRx8ZXS8oKMDEiROhUCjg7e2NyZMno7i42KhOZmYmBg8eDHd3dwQFBWHZsmU17r9x40Z0794d7u7u6NmzJ3burCXbtoOqL0eUVOQy4L0dp/DGhgxM+OIg+r6XhI93n0WlroXE98oewLO3gD8UAapRxmU/jwPWyYD0WYCgs077iIioUawaWJWUlKB3795YuXJlnfU2bdqEgwcPIjAwsEbZxIkTcfLkSSQlJWH79u1ITU3F1KlTDeVarRajRo1Cx44dkZ6ejvfffx8LFy7E55/f2x5/4MABTJgwAZMnT8bx48cxduxYjB07FllZWdJ11sY1ae6nKqrHT4W3K/Dh7l/Re9GPeHfbSaSdv9EygiyX1sDwXcAEHdDrPeOyMx8C652AxP5AWYF12kdERA1iM1OBMpkMmzZtwtixY42uX716FeHh4di1axdiYmIwY8YMzJgxAwBw6tQphISE4MiRI+jXrx8AIDExEWPGjMGVK1cQGBiIVatW4S9/+QvUajVcXV0BAHPmzMHmzZtx+vRpAMCzzz6LkpISbN++3fC+AwcORFhYGFavXm1W++19KjDt/A1M+OJgk91fLqsZVNXGx9MVY8MCMTJE1bKmCnOTgJ9GmS6LPgr49G3e9hARtQAONRVYH51OhxdeeAGzZ8/Ggw/WzH2UlpYGb29vQ1AFAJGRkZDL5Th06JChzpAhQwxBFQBERUXhzJkzuHnzpqFOZGSk0b2joqKQlpZWa9vKysqg1WqNHvZsQLAPApTuqC2EkQFo5epk0T19PF3w4bNhmBfTw+ygCgAKSsrxf/svYMIXBzFoaTISs3Itel+7FTBSzOr+xEWgVXvjssR+4jThuX9Zp21ERGQWmw6sli5dCmdnZ7z++usmy9VqNfz8/IyuOTs7w8fHB2q12lDH39/fqI7+eX119OWmLF68GEql0vAICqolb5GdcJLLDCkVqgdX+ud/GtLZ7PvJAPz9yZ548qH74Ovl1uB25d49Z7DFBFcA4NkBGHsZeLYU6PiccdnhKWKAlTYJqLT8zEciImpaNhtYpaen4+OPP8aaNWsgs8FkinPnzoVGozE8Ll++bO0mNZr+UGeV0vhIGJXSHaue74P44V0QoKz/uJiAu/X1OaUae8SMAOCtjZnYdOxKy1mDBQBObsAjX4ujWP0/NS7L+Q/wjRuw5X7g1lXrtI+IiGow+6zA5vbzzz8jPz8fHTp0MFyrrKzEm2++iY8++ggXLlyASqVCfn6+0evu3LmDgoICqFQqAIBKpUJeXp5RHf3z+uroy01xc3ODm1vDR2JsVfVDnaunRFgQG2Iy87nezMiuiB/e1WhdlH6asTG7DovL7mDmt78AAFQKdyx83MaSgTa1rtPEx++HgR/D710vyQE23502HPET4P+oVZpHREQimx2xeuGFF5CZmYmMjAzDIzAwELNnz8auXbsAABERESgsLER6errhdcnJydDpdAgPDzfUSU1NRUXFvcSWSUlJ6NatG9q0aWOos2fPHqP3T0pKQkRERFN30ybpD3V+Iuw+RHRuaxQk1TaqFaB0x+rn++CNyAdqLDbXTzNKNe6o1pbi1ZY2PajnO0AcwXrqOtAmzLhszzBxmjB7KWAbe1KIiFocq+4KLC4uxrlz5wAADz30ED744AMMGzYMPj4+RiNVep06dTLaFQgAo0ePRl5eHlavXo2Kigq89NJL6NevH9atWwcA0Gg06NatG0aNGoWEhARkZWXh5ZdfxocffmhIy3DgwAEMHToUS5YsQUxMDDZs2IC///3vOHbsGEJDQ83qi73vCrRUQzKfJ2blYs73JyTJ3g4AbVq54Og7DT930CHoKoFjM4FfP6lZFhgDDPoWcG7V/O0iIrITDpV5PSUlBcOGDatxfdKkSVizZk2N66YCq4KCAsTHx2Pbtm2Qy+UYN24cli9fjtatWxvqZGZmIi4uDkeOHIGvry+mT5+OhIQEo3tv3LgR77zzDi5cuICuXbti2bJlGDNmjNl9aWmBVUNV6gQkfJeJ745dkeR+X78Sjke6+EpyL7t38Rtg//ia110UQNRRQNG1+dtERGTjHCqwciQMrMxXfkeHbu/80OjDnAEgblhnDOrSzn7ODGwOmmzgh4cAnYldg4M3AUFjm71JRES2ioGVjWJgZT4pk5F6ujqhpLzS8DxA6Y55MSFo4+nKYKuiCPj5KUC9u2ZZj9lA2BJAZrPLLImImgUDKxvFwMp8WzKu4o0NGc32fi02k7ueIABZ7wInFtYsaxsODPsBcG3T7M0iIrIFDKxsFAMr8zX18Tl1CVC6Y0FsC0vVUNW1XUBKtOmy6GOAz0PN2x4iIitrUUfakGOq7/icptQiM7lXFRh199icC4BHtUPNE/uI6RrOf2mVphEROQIGVtTsqh6f0xBKj8bltRUAzP3+RMvJ4G6KZ0fgyavisTkdnjUuO/SyGGAdfBnQSZMag4iopeBUoEQ4FWi5xKxcLNyaDbW29ozsMgD+Cjf885kw/F5cBj8vd+h0Aib++1Cj339mZFe8EflAo+/jMM6sANKn17zeugswMhXwaKHTp0Tk0DgVSA4jOjQA++cMx8xI0/mV9FOFCx9/EAPvbws/L3fkF4lBmErR+KnEL/dfaNmjVtV1ixenCUelGV8vPgdsChRHsfJTrdM2IiI7YbNnBVLL4CSX4Y3IB9BN5YVF27KNzhNU3V1oDgCDliYblXm3coEAMfhqaGhUeLsCh3MKENG5bcM74Ih8B4oBVmk+kBwJFJ64V7Z7qPjrQ+8D3d8EbPCAdCIia+JUoEQ4Fdh4VY/J8W3tBgjAntN5+L/9F2rU1QdU3q1cGnVEzsfjw/BE2H0Nfn2LoKsE0l8Hzn5as+y+WOCRDTw2h4jsFqcCyWHpD392c5bjzW9/wcR/HzIZVAEwjFa5O8sRN6xzg9/Tz8u9/kotndwJ6L9SHMV6+GvjsqvbgG89gY1tgKLz1mkfEZENYWBFNiUxKxevrj1W54J2PQGAWlsGn1auFr+PDGJOqwHBPpY3siXr9JwYYI05Acic7l2vKAS2dRHXYV3ZarXmERFZGwMrshnld3R4a2Omxa/z8XS1KC+Wvt6C2JCWl4VdKt6hwIQ7wB80gN+jxmWpT4gBVsYcQNBZpXlERNbCwIqsplInIO38DWzJuIqPd59F+N92o7jsjsX3USk9DIvczQmTVEp3rHq+T8vNvi4lFwUQ+RMwQQeEzjcuy14KrHcCkgYB5YVWaR4RUXPj4nWJcPG6ZRKzcmvsArSUDGKQtC9hOJzkMpP3FA9l7oE2nm48lLm5XN0J7I0xXTY6A2jTu1mbQ0RUF54VaKMYWNVPv+svKVtd66J0c+nDouojT1V3FjKIsrLiHODHgWLahuoGfgXc/8fmbxMRUTUMrGwUA6u6STFCVVWLP0zZnlSWAgdeAC5/V7Os8ytA/1WAnCn1iMg6GFjZKAZW91QfNbpZUo64dccanMizqlauTvjij/0w8P62HImyR6c/Bo7NqHld0Q0YkQJ4qJq5QUTU0jGwslEMrESmRqbkMkCqk2NWc9G5Y7i+X1zUbkrkz4BfLWVERBKT+vub4+/UKFVHpy78fgsf7f61xsiUFEGVSuGGhY8/yKDKUbR7RMyHdTsPSB4OaLLvle0eLP7a5wOg+0zrtI+IqIE4YiURex+xasiib6nXTdVmZmRXxA/vyqk/R6a7AxyNB859VrOs/ZNixndnj+ZvFxE5PE4F2ih7DqxqS1NQ1+LwxKxcTFsrzbqp2nCBeguV818gzcSOQbe2QNRhoPX9zd8mInJYDKxslL0GVjszc/HaumM1rteWzgAQR7cGLU2WfKRKpXDDhAEd0MnXk6kSCCg8AezsZbps6HbgvlpyZRERWYBrrEgyOzOvIX79cZNl+kOOF23LxsgQlVGAczinQNKgavIjnRAZomIgRca8e4rrsMo1QOrjQH7qvbK9j4m/PvhnoNdfARl/bojINjCwamEsSdIpAMjVlOJwTgEiOrc1XM8valhQVX13IKf6yCyuSiByLyAIQOY84OTf7pWd/Lv4aDcYGLpNrEtEZEUMrFqQhi42rx5I+Xm5W/R6/VjCigkP8WgZajiZDOj9V/FxdTuwN/Ze2fWfge+8xd+PyRRHu4iIrICBVQvRmMXm1QOpAcE+CFC6Q60pNet+Ko5MkdTue0ycJiz+DdgVDpT9fq9Mvy4rYi0QPNE67SOiFouL1yViy4vXG7PYPKDKIcdV6QM1AEbBlezu85mRXbkInZrPndvAgYnAlU01y7r8Cei3gsfmEJFJUn9/yyVoE9m4xiw2nxcTYjIoig4NwKrn+0ClNB7NUindsfr5Pngj8gE8EXYfIjrz6BlqBs4ewJDvxVGsPh8Yl537DNjgAux40PSB0EREEuJ/4VqAhi42B4A2nq61lkWHBmBkiMrixKJETar7TPGR/zOwe8i965ps4Ht/8fcj9wPtHrZO+4jIoTGwagEsXWxeVX1BmZNcZrRjkMhm+A2+e2yOGtgzDNCevleW9Ij4a9+PgW6vW6d9ROSQOBXYAgwI9oFK0bDgqjFBGZFN8FABj50CxlcAnV8xLkt/A1gnA35+Gqhs2qOZiKhlYGDVAjjJZZgwoINFr5FBXLg+INinaRpF1NzkzkD4F+Io1sA1xmWX/wd84yFOFRZfsEbriMhBMLBqITr5tjK7rn6F1IJY0wvXieze/ZPEAGt0hvH10nxga7A4inXtB6s0jYjsGwOrFsKSKT2V0t3kGYFEDqdNbzHAevom4FttMXvKGDHAylwgZn0nIjIDA6sWYkCwD3zq2OFX1bJxvRhUUcvi6g2M2g9MqARC5hiXZb0LrJcDu4cBFVqrNI+I7AcDqxbCSS5DuJnrpQ7lFDRxa4hslEwOhC0WR7GGbDEuy08BNiqB9c5A4UmrNI+IbB8DqxakcztPs+r9dr2oiVtCZAfaPy4GWLFnAdc2964LlcDOUHGa8MJ667WPiGwSAys7U6kTkHb+BrZkXEXa+Ruo1Jm/9iM82Lx8U2m/WXZfIofm1QV4ugB4pgS473HjsgPPiQHWkThAV2md9hGRTWGCUDuSmJWLhVuzodbey7ejUrhj4ePmHXAsl5m3w+/mrTs4nFPAxJ9EVTm3AoZuEReyn/4ncHz2vbKzn4oP757A8D2AezvrtZOIrIojVnYiMSsXr649ZhRUAYBaW4pX1x5DYlZuvffILy4z+/0acwwOkUOTyYAeb4nThCNSjMsKTwDf+4mjWL8ftEbriMjKrBpYpaamIjY2FoGBgZDJZNi8ebOhrKKiAgkJCejZsyc8PT0RGBiIP/7xj7h27ZrRPQoKCjBx4kQoFAp4e3tj8uTJKC4uNqqTmZmJwYMHw93dHUFBQVi2bFmNtmzcuBHdu3eHu7s7evbsiZ07dzZJnxuiUidgzvcn6qwz9/sT9U7fFVgQWDHjOpEZ/IeKAdbYq0DrLsZlP0aIAdavK63TNiKyCqsGViUlJejduzdWrqz5D8+tW7dw7NgxzJs3D8eOHcP333+PM2fO4PHHjdc4TJw4ESdPnkRSUhK2b9+O1NRUTJ061VCu1WoxatQodOzYEenp6Xj//fexcOFCfP7554Y6Bw4cwIQJEzB58mQcP34cY8eOxdixY5GVldV0nbfAwd9uoPBWRZ11bt6qwMHfbtRZx9x0C94eLsy4TmSJVoHA42eB8eXA/S8blx2NFwOsfeOBSvP/c0NE9kkmCLaR+U4mk2HTpk0YO3ZsrXWOHDmCAQMG4OLFi+jQoQNOnTqFkJAQHDlyBP369QMAJCYmYsyYMbhy5QoCAwOxatUq/OUvf4FarYarqxhYzJkzB5s3b8bp0+KhrM8++yxKSkqwfft2w3sNHDgQYWFhWL16tcm2lJWVoazs3j+SWq0WQUFB0Gg0UCgUjf3jMPKPXWew4qdz9daLG9YZg7q0Q35RKfy8xONoqmZOTzt/AxO+qH96YmbkA3gjsmuj2kzU4p3/P+DQ5JrXPQKAUWmAZ8fmbxMR1aDVaqFUKiX7/rarNVYajQYymQze3t4AgLS0NHh7exuCKgCIjIyEXC7HoUOHDHWGDBliCKoAICoqCmfOnMHNmzcNdSIjI43eKyoqCmlpabW2ZfHixVAqlYZHUFCQVN2sQWfmDr0v9+VgwhcH8caGDEz44iAGLU02Wns1INgHAcq6p/i8W7kgfniXOusQkRk6vyxOE0YfM75+OxfY0kkcxcr90SpNI6KmYzeBVWlpKRISEjBhwgRDRKlWq+Hn52dUz9nZGT4+PlCr1YY6/v7+RnX0z+uroy83Ze7cudBoNIbH5cuXG9fBOhTeLjer3q0KndFztaYU06osbHeSy7AgNgR17Q1c8lRPng9IJCWfh+4em1MAtB1oXPZTlBhgnVjEY3OIHIRdBFYVFRV45plnIAgCVq1aZe3mAADc3NygUCiMHk3lelHD1mXo/5letC3bsLA9OjQAq57vU2PkKkDpjtU8H5Co6bi2AaLSxGNzerxlXHZioXhszp5IoIIJeonsmc3nsdIHVRcvXkRycrJRAKNSqZCfn29U/86dOygoKIBKpTLUycvLM6qjf15fHX25tXm6NfxjEgDkakqN8lJFhwZgZIgKh3MKkF9UCt/WboAA/F5ShrTzN2qszSIiCcnkwEPvi4/Lm4Cfn7pXlrcH2KgA5K7A6AxA2cNqzSSihrHpESt9UHX27Fns3r0bbdsaJ6yMiIhAYWEh0tPTDdeSk5Oh0+kQHh5uqJOamoqKinu76pKSktCtWze0adPGUGfPnj1G905KSkJERERTdc0i4x5q3+h7VM9L5SSXIaJzW7g5y/HWxl8w8d+Hal2bRURNJOhJcZrwsV8Blyqj3rpyYEeIOE148VvrtY+ILGbVwKq4uBgZGRnIyMgAAOTk5CAjIwOXLl1CRUUFnn76aRw9ehRff/01KisroVaroVarUV4urjnq0aMHoqOjMWXKFBw+fBj79+9HfHw8xo8fj8DAQADAc889B1dXV0yePBknT57EN998g48//hizZs0ytOONN95AYmIi/vnPf+L06dNYuHAhjh49ivj4+Gb/MzHl4a6+aOXq1Kh7+LZ2q3EtMSsX09YeQ66mWtLRamuzqmvMsTpEZIKiK/AHjXhsTuBjxmX7nxUDrKOv89gcIjtg1XQLKSkpGDZsWI3rkyZNwsKFCxEcHGzydT/99BMeffRRAGKC0Pj4eGzbtg1yuRzjxo3D8uXL0bp1a0P9zMxMxMXF4ciRI/D19cX06dORkJBgdM+NGzfinXfewYULF9C1a1csW7YMY8aMMbsvUm/XrE6feb2hvp4cjke6+hqeV+oEDFqaXCOo0pMBUCndsS9huNG0YGJWLhZtyzZ6XYDSHQtixWN1KnWCYYrRVMoHIjKDIACnlgEZc2qWtQkDhiUB7r41y4jIYlJ/f9tMHit719SBFSAGNQu2ZCGv6N4uQYW7E7Sl9f8v9uPxYXgi7D7Dc3NzWq2fMtCwNks/wlX9B0YfNk0dEoytv+TWGnQRUQPk/QTsGW66bNQhwHdA87aHyMFI/f1t84vX6Z7qi879vNyh0wmY+O9D9b62+hE15p4FqK9XqROwaFt2jaAKuLf78LPUnBpl+mnFVdxxSNQw/sPEdVi3rgK7hwDFv90r+1FcS4r+q4Cur1qnfURkhIGVndEvOter1AkIULpDrSk1GfTop/SqH1Fj7lmA+nqHcwpqnTasi3C3DYu2ZWNkiMpoWpDThkQWaHUf8Ph5oLIcODwFyPnPvbIj08RHx+eAgV8CTuYdX0VE0mNgZef0ST+nrT0GGWAUXOlDlAWxITUCFn0WdnMDMnNHuEypmvJhQLAPDucUIClbjc0Z11BQcm9ak9OGRGZwcgUivhIf574ADt87GxUX14mPVkHAyP2AZ9OdCEFEptl0ugUyjz7pp6pa0k+V0r3WKTh9QAagRiZ2UwGZuSNcddmdrcagpcmY8MVB/N/+C0ZBFVD/bsTG4E5Gckhdptw9Nueo8fVbl4EtHcTdhOrd1mkbUQvFxesSaY7F6/VpyNRafbv8qt570NLkWke4pFLbbsTGMLePRHav7Abw02ig4EjNsl5/BR78MyDjdDtRVdwVaKNsIbBqKHMDMv2uQAAWB1dyGWDJIFHV3YiNUd9ORksX1XNdGNkFQQccnw2c/qBmmWoUMPh/gEvrmmVELRADKxtlz4GVJUyN/jSF6ukhGqKhubpqI+XIFwM0ajaX/gfse7rmdScPYPRxQNGt+dtEZEOYboGsqmrKB7W2FO9tP4mCkopa68tlwKSIjvjywEWL3keKNV317WQ0dY5ibWob+WpIOglrTU0ymGuhOowT12FpzwCJfYE7JeL1ytvA9u7i7wdtBDqYCL6IyGIMrMhiVVM+eLjI65weXDHhIbTxdDM7sKotPURDWJqrqzb15fCqLZ2EKVIGaJZwtHVmDBIbQNENeKYYqCgG9v0ByE28V7bvD+Kv3WYAff4pHhRNRA3Cvz3UKLXtSAxQumP1830wplegIbVDfV97daWHaAhLc3XVxpKRr7qYk2R10bZsyXcsNvRMSFuVmJVr2F3Kg8MbwKU1MOwHYIIO6P1347IzHwHrnYDEfuJCeCKyGAMrarTo0ADsSxiO9VMG4uPxYVg/ZSD2JQw3jITUldqhqrrSQzREfQGdDGIAWN/omFQjX1IFaJawVjDXVBwtSLQqmQx4cK44TTi8WkqGgnTgf75iuoYbR02/nohM4lQgSaJ6Rvjq9CNb1aejfDxd8GTYfYgMUUk+ndPQ5KnVSTXyJVWAZgkp15lZm7lTsl5uLvi9pIxThJZQjbh7bM4V4MdHgFuX7pXt6i/+OuBzMW8WEdWJgRU1G1NnHTb1F19tAZ3KgvVFlmapr425AZpvazez6pnDGsFcUzE3SKx6dqY9ryOzilbtgbEXxWNzDk0GLqy9V3Z4qvjo9DwQ/m8em0NUC6ZbkEhLSbdgrxq72Lm2HF6W5MMyN8mqSuGGhY8/2OBgoGpffy8qw3s7TtX7GqnyhjWlLRlX8caGDIte09B8ZVTF2c+AIyYOePbsBIzcJ55hSGTHmMfKRjGwcnxS7KwzJ8lqY4IBU22sKzlrU2S6bypp529gwhcHLX6dPfXRpt04AuwaYLps+B5ANbx520MkEQZWNoqBVcsgxTb/xKxcLNyaDbW29mmthgQDtaVyqOs9APsZzWnssUr2MCpnF0p/B36KAm4eq1nW++9AyBwem0N2Rervb+4KJLKAfpH+E2H3IaJz2waNgESHBuCff+hdZx1LdwjWtbBbr3pTpd6F2dTM3V1aG3tYR2YX3H2B0enA+DtAtzeMy375M7BeDqTE3EtEStTCcPE6kRX8XlJmVj1zg4H6FnYD4nTgvJge8PVys9sdc7VtRjCHlJsCbIVVE6XKnYC+H4mPi98C+5+9V3ZtJ/Bta8C5NRCdDigeaJ42EdkABlZEViBVCgc9cwMwXy+3Rp/BaG3Vd5fma8vwt531L9Bv0PxhE5FqStlmsul3fEZ8aE4BiX2AyrttulMMbL97FuHg74GgJ5u3XURWwMCKyAqkSuGgJ3WgZuuq5k3bknHVrNeYO0rY1KTcBNHcRyPVS9kDePa2eGzOz08B6qR7ZT8/Jf7a/U3goWU8NoccFn+yiaygrvVCDTnaR6os8/bInoJKKTLH20U2fZfWwPAfxWNzer5rXHb6n+KxObvCgTLLTxmo1AlIO38DWzKuIu38Dbs5NYBaDgZWRFZS2zmLDVlULnWgZk/sJaiUKiCyxtFIDSaTAT3niVndh+0yLrtxGPhfW/HYnAITOwxN4DmRjsuRAmZOBRJZkZTZ6KXIMm+PpDq6qKlJdbyQ3WbTDxglBlgll4AfHwZuV5nCTewr/hr+b6DzyyZfbrPTnzbCqhsZGsmm1gtKgIEVkZXVd86iJaxxbJAtsIegUqqAyJ6mPk3y7AA8eQWoLAMOvgRcXH+v7NBk8XH/i+LZhHIXAOafEzkyROXwP+umNGdgInUA54gBMwMrIgcjZaBmT2w9qJQqIJJ644PVOLkBj6wTH79+ChyNu1f22xrx0fp+IPJnHM51c5jDxKXWnIGJ1AFcpU7Awq2OFzBzjRUROQwpErg2FanWgjnkeroHXhOnCUdVO7Ko+Ddg832IOOSLcM8T9d7G5qY/m1hzbmSQYuNFdSuSz9Z5AkXVgNme1mAxsCIiagZSBkRSbnywKb7hYoD1VD7gbXw6wTed5+JCr8cwtd3/UFtSsuae/rT2l70UGxnM6UNTBHCJWbn4cPdZs+ruzlbb1aYFnhUoEZ4VSETmkHI6xZ4XLJtFVwkcmwH8uqJG0W5tf8RfTECp4G6Vg7ZtYcH1loyreGNDRr31Ph4fZjIxsLl9MPcAdHPP49Sf+2np6QlVSXnWqdTf31xjRUTUjKRcC+bw6+nkTkC/T4B+nyBj3yqEXXrNUBSpOILTPZ+GttITj5/9EHNiH2vWoMoWFlw3Zt2eJX2QeieqOUdw6cll4nFc1dnyGixOBRIRNTNbXgtmq8IGTUNir2t47tq/UK67NyagcCpBSvepiM4MBK5safJ22FKC1oau2zO3D+V3dEg7fwNn84rMao/UR3ABpoMqPZvK2VYFAysiIrIL0aEB+O+sl5EeocaObqehUQw2rpA6Vkw4ejwBEHRN0gZbStDa0HV75vZh4OLdmPDFQaz46Xyd7bA0Ca+5AdjoUH+z6tnapgUGVkREErP2omZHph/ti+nbDcrHUu8em7PQuNKpZeKxOT8+DJQXSvr+tpagtSEbGcxtW0FJRb11muIILgBQKdzwfHgns+5naznbuMaKiEhCtrCouUWRyYCeC8THtV1ASvS9st/TgO/aiL8ffRxoE9bot7PFBK2WrtuTsm0NScJrzmkJCx9/EAM7t7XLnG3cFSgR7gqklsrhd6ZZoLYFwVLuYCIzFF8Akh4GbpvYjj/wSzGzewPpd7TV92XfnDsULVVfH8wRP6wLHuni26i/7+b8J0T/dwowHYDZ4q5ABlYSYWBFLRFHZ+6pbwu5PXzhOpzKUiBtEnDp25plnScD/VcZjs2xRHN82Te12vpgrtpSOFjKnP+YNfW/MwysbBQDK7InUowycXTGmNS5fkhiZz4B0l+ved3rASByL+Chsuh2jvCfClN9aOvpihsl5fW+trl/jptyZJx5rIioUaT4QuChuDXZ2qJmqqbbdPFxPU2cJtQr+hXYdPfnPjIV8Bts+vXV2PrZlOYw1Ye+Hdtg6Ps/2dy6JnvK2cZdgUQtiBTnfVXqBKzZn2MzW85thS0uaiYT2kXcPTYnD1CGGpftHiKmazj1AWDGZI4j5COr3gdXZ7njnUXZzBhYEVnIXrfSS5HYMDErF4OWJuO9HafMes+WNDoj1SHL1Ezc/YCYE8D4CqDra8Zlx98E1suB1CeBO7et0z4rctizKJuJVQOr1NRUxMbGIjAwEDKZDJs3bzYqFwQB8+fPR0BAADw8PBAZGYmzZ40PbSwoKMDEiROhUCjg7e2NyZMno7i42KhOZmYmBg8eDHd3dwQFBWHZsmU12rJx40Z0794d7u7u6NmzJ3bu3Cl5f8n+6QMLezkMtKrGJjasbbSrLi1pdEbKQ5apGcmdgf4rxVGsiLXGZVc2A9+2Ar5rCxT/ZpXmWUt0aAD2JQzH+ikD8fH4MKyfMhD7EoYzqDKDVQOrkpIS9O7dGytXrjRZvmzZMixfvhyrV6/GoUOH4OnpiaioKJSW3vuHfeLEiTh58iSSkpKwfft2pKamYurUqYZyrVaLUaNGoWPHjkhPT8f777+PhQsX4vPPPzfUOXDgACZMmIDJkyfj+PHjGDt2LMaOHYusrKym6zzZrNpGpKSYRrOmxqwBqmu0y5SWOjrD/+nbueCJYoA15gQgq/L1WF4AbO0sThNe3W699jUzR5jqtAab2RUok8mwadMmjB07FoA4WhUYGIg333wTb731FgBAo9HA398fa9aswfjx43Hq1CmEhITgyJEj6NevHwAgMTERY8aMwZUrVxAYGIhVq1bhL3/5C9RqNVxdXQEAc+bMwebNm3H69GkAwLPPPouSkhJs337vL8zAgQMRFhaG1atXm9V+7gp0DLUt7J4X0wPv7ThV52hNW09XpM0dAVdn25xhb8yuNXNfC7TcXYFVMbeXg6jQAnsfB/L31iwLmQv0/puYoJTsmtTf37b5DQAgJycHarUakZGRhmtKpRLh4eFIS0sDAKSlpcHb29sQVAFAZGQk5HI5Dh06ZKgzZMgQQ1AFAFFRUThz5gxu3rxpqFP1ffR19O9jSllZGbRardGD7FtdI1KvrTte7xTYjZJyDFy8u9EjV021hqsxa4AsWSvF0Rn+T99huCiAyBTx2JwH3zEuy14srsNKGgyUa6zSPLJNNptuQa1WAwD8/Y0PYfT39zeUqdVq+Pn5GZU7OzvDx8fHqE5wcHCNe+jL2rRpA7VaXef7mLJ48WIsWrSoAT0jW2TOwm5zFJRUYNraYw0OLGofMQtBG0/XRo2AmHOMRG1rgMxdKzUvpgdefCSYgQQ5FpkM6P2e+Li6E9gbc6/s+j7gO2/x96N/Adr0skoTyXbY7IiVrZs7dy40Go3hcfnyZWs3iRqhvoXdlqpvd50ptY2Y5WpK8dq6Y5IsmG/oGiBzR7sYVJHDu2+MuA7r8d/EnYVV/dBbXIeV81/rtI1sgs2OWKlUYhbcvLw8BATc+8c+Ly8PYWFhhjr5+flGr7tz5w4KCgoMr1epVMjLyzOqo39eXx19uSlubm5wc3NrQM/I2kytf5EyLUDV3XXmJrSzdHG4fsF8Q0bGGpLYsDGjXUQOqXWwmAurshQ48Dxw+X/3ytL+KD66TAX6rRR3HlKLYbMjVsHBwVCpVNizZ4/hmlarxaFDhxAREQEAiIiIQGFhIdLT0w11kpOTodPpEB4ebqiTmpqKiooKQ52kpCR069YNbdq0MdSp+j76Ovr3IcdRW7qEC7+XSP5elgRrlo6YmZt3qjYNWQPEHW9EJji5A4O/E0ex+nxoXHbuc2CDC7C9B3A7z/TryeFYNYwuLi7GuXPnDM9zcnKQkZEBHx8fdOjQATNmzMBf//pXdO3aFcHBwZg3bx4CAwMNOwd79OiB6OhoTJkyBatXr0ZFRQXi4+Mxfvx4BAYGAgCee+45LFq0CJMnT0ZCQgKysrLw8ccf48MP7/0FeOONNzB06FD885//RExMDDZs2ICjR48apWQg+1fb2XZqTSk+3H0W3q1coLlVUe+okUxmVlJmi3I4NWTErCEjY43lCMd4EDWZ7jPEx/X9QNKge9e1p4FNd2dARu4D2j1ijdZRM7FqYHX06FEMGzbM8HzWrFkAgEmTJmHNmjV4++23UVJSgqlTp6KwsBCDBg1CYmIi3N3vfWF9/fXXiI+Px4gRIyCXyzFu3DgsX77cUK5UKvHjjz8iLi4Offv2ha+vL+bPn2+U6+rhhx/GunXr8M477+DPf/4zunbtis2bNyM0tNpxB2S3zDnbTq/6VFeN+vUEVabO0qpv+31jEmk2d3Zzezqzi8gq2j0ijmDdVgN7hgPaKicV6AOuPh8B3d+wSvOoadlMHit7xzxWts3cPEwzIx/AhiOXzJ6Wq229UdWpMXMOPa7UCRi0NLnWg0/r0tynzBORhXR3gKNx4tRgdUFPAQ9/LU4pklW0mDxWRFIyd1Snk28r7EsYjnkxPcyq38bT1eh59fVG5mZrr+s4lNq01OzmRHZH7gwM+OzusTn/MS67/D3wjQfwPz+gOMc67SNJcasCtQjmTrX5ebnDSS6Dr5d5Oz7nxfSASulhcorPnOnHRduyMTJEBSe5zLA4vProlinciUdkp4JfEB83M8X0DHpl14Gt94u/H7pDTOtAdomBFbUI+jxMtU21VV8XZW4gplJ61DoNZ8mhx/p7mFocfrOkrMZxOqpqU4lEZGfa9BJHsMoLxWNzrv98r0yfgPTBd4Be7/LYHDvDwIpaBEvzMFkaiJnS0EOPTS0OjwoN4E48Ikfk6g2MTBV3xWS+A5z8+72yk38VH35DgKHbxCN2yOZxjRW1GJbkYaprzZO503CWTD/Wh2fPETk4mUw81Pk5QQyiqspPBTYqgfVOQGGWddpHZuOuQIlwV6D9qC/1QVXm7Oir633q2umnH/XalzCcgRIR1VR0HvgxHCi7UbPs4a+BTs81f5sckNTf3wysJMLAynFZEohVp98VCNSfloGIyKQ7t4EDzwFXNtcs6/Iq0O8THpvTCAysbBQDK6pNY0a9iIiMnP4QODar5nVlKDBiT82DoaleDKxsFAMrqktjRr2IiGrITwV2DzVdNvIA0I5n3ZqLgZWNYmBFRETN7nYusPtRoOjXmmV9PwG6xTd7k+wNM68TERGRyCMAiD0DjC8HOr9iXJY+HVgnA/Y9A1Q275miLRkDKyIiInsndwHCvxDTNQxcY1x2aaN4bM73AUDJRas0ryVhYEVERORI7p8kBlijjxtfL1UDWzqJo1jXEq3StJaAgRUREZEjahMmBlhP3wR8HzYuSxktBliZC8Ws7yQZBlZERESOzNUbGLUfmFAJhCQYl2UtAtbLgT0jgIoiqzTP0TCwIiIiaglkciBsiTiKNWSzcVleMrBRAax3ATTZVmmeo2BgRURE1NK0f0IMsGLPAi7e964Ld4AdD4rThBe/sVrz7BkDKyIiopbKqwvwh5vAMyXAfbHGZfvHiwHW0emArtI67bNDDKyIiIhaOudWwNCtwAQdELbMuOzXFcAGZ2Bnb6D0unXaZ0cYWBEREZFIJgNCZovThCNSjMsKM4Hv/cRRrN8PW6N1doGBFREREdXkP1QMsMZeBVp3Ni77MVwMsM6usk7bbBgDKyIiIqpdq0Dg8XPisTn3v2hcduQ1McDaPwGoLLNK82wNAysiIiKqn9wFGPilOIoV/i/jsosbgG/cgU3tgZJL1mmfjWBgRURERJbpPFkMsKLTja/fvgps6SiOYuUmWadtVsbAioiIiBrGp48YYI27AbQdYFz20ygxwDrxXos6NoeBFRERETWOmw8QdUg8NqfHW8ZlJ+aLx+YkjwIqiq3TvmbEwIqIiIikIZMDD70vjmIN/t64TJ0EbPQCvvEANKet075mwMCKiIiIpBf0pBhgPXYGcPa6d72yFNjRQ5wmvLTReu1rIgysiIiIqOkoHgCe0QLPFAOBY4zL9j0jBljpMxzm2BwGVkRERNT0nD2BR3fcPTZniXHZmY/FY3N+6AuU3bBO+yTCwIqIiIiaj0wGhCTcPTYn2bjs5jHgf77iKNaNI9ZpXyMxsCIiIiLr8B9299icy4BnJ+OyXQPuHpvzmVWa1lAMrIiIiMi6WrUHnsgBni0Dgv9oXHbkVTHAOvA8UFlunfZZgIEVERER2QYnVyDiK3EUa8DnxmUXvga+cbNOuyzAwIqIiIhsT5cpYoAVVWWtlVs767XHTM7WbgARERFRrdr2EwMsO8ERKyIiIiKJMLAiIiIikggDKyIiIiKJMLAiIiIikohNB1aVlZWYN28egoOD4eHhgc6dO+O9996DINxbxCYIAubPn4+AgAB4eHggMjISZ8+eNbpPQUEBJk6cCIVCAW9vb0yePBnFxcVGdTIzMzF48GC4u7sjKCgIy5Yta5Y+EhERkeOw6cBq6dKlWLVqFVasWIFTp05h6dKlWLZsGT755BNDnWXLlmH58uVYvXo1Dh06BE9PT0RFRaG0tNRQZ+LEiTh58iSSkpKwfft2pKamYurUqYZyrVaLUaNGoWPHjkhPT8f777+PhQsX4vPPq+XQICIiIqqDTKg6/GNjHnvsMfj7++Pf//634dq4cePg4eGBtWvXQhAEBAYG4s0338Rbb70FANBoNPD398eaNWswfvx4nDp1CiEhIThy5Aj69esHAEhMTMSYMWNw5coVBAYGYtWqVfjLX/4CtVoNV1dXAMCcOXOwefNmnD592mTbysrKUFZWZniu1WoRFBQEjUYDhULRVH8kREREJCGtVgulUinZ97dNj1g9/PDD2LNnD3799VcAwC+//IJ9+/Zh9OjRAICcnByo1WpERkYaXqNUKhEeHo60tDQAQFpaGry9vQ1BFQBERkZCLpfj0KFDhjpDhgwxBFUAEBUVhTNnzuDmzZsm27Z48WIolUrDIygoSNrOExERkd2x6QShc+bMgVarRffu3eHk5ITKykr87W9/w8SJEwEAarUaAODv72/0On9/f0OZWq2Gn5+fUbmzszN8fHyM6gQHB9e4h76sTZs2Ndo2d+5czJo1y/BcP2JFRERELZdNB1bffvstvv76a6xbtw4PPvggMjIyMGPGDAQGBmLSpElWbZubmxvc3Gz/zCIiIiJqPjYdWM2ePRtz5szB+PHjAQA9e/bExYsXsXjxYkyaNAkqlQoAkJeXh4CAAMPr8vLyEBYWBgBQqVTIz883uu+dO3dQUFBgeL1KpUJeXp5RHf1zfR0iIiKi+tj0Gqtbt25BLjduopOTE3Q6HQAgODgYKpUKe/bsMZRrtVocOnQIERERAICIiAgUFhYiPT3dUCc5ORk6nQ7h4eGGOqmpqaioqDDUSUpKQrdu3UxOAxIRERGZYtOBVWxsLP72t79hx44duHDhAjZt2oQPPvgATz75JABAJpNhxowZ+Otf/4qtW7fixIkT+OMf/4jAwECMHTsWANCjRw9ER0djypQpOHz4MPbv34/4+HiMHz8egYGBAIDnnnsOrq6umDx5Mk6ePIlvvvkGH3/8sdEaKiIiIqL62HS6haKiIsybNw+bNm1Cfn4+AgMDMWHCBMyfP9+wg08QBCxYsACff/45CgsLMWjQIHz66ad44IEHDPcpKChAfHw8tm3bBrlcjnHjxmH58uVo3bq1oU5mZibi4uJw5MgR+Pr6Yvr06UhISDC7rVJv1yQiIqKmJ/X3t00HVvZEo9HA29sbly9fZmBFRERkJ/S7+gsLC6FUKht9P5tevG5PioqKAIApF4iIiOxQUVGRJIEVR6wkotPpcO3aNXh5eUEmk0l+f31E3RJGxFpKX1tKPwH21RG1lH4CLaevLaWfgHFfvby8UFRUhMDAwBob5hqCI1YSkcvlaN++fZO/j0KhcPgfeL2W0teW0k+AfXVELaWfQMvpa0vpJ3Cvr1KMVOnZ9K5AIiIiInvCwIqIiIhIIgys7ISbmxsWLFjQIo7RaSl9bSn9BNhXR9RS+gm0nL62lH4CTdtXLl4nIiIikghHrIiIiIgkwsCKiIiISCIMrIiIiIgkwsCKiIiISCIMrGzMwoULIZPJjB7du3c3lJeWliIuLg5t27ZF69atMW7cOOTl5VmxxeZJTU1FbGwsAgMDIZPJsHnzZqNyQRAwf/58BAQEwMPDA5GRkTh79qxRnYKCAkycOBEKhQLe3t6YPHkyiouLm7EX5qmvry+++GKNzzg6Otqojj30dfHixejfvz+8vLzg5+eHsWPH4syZM0Z1zPl5vXTpEmJiYtCqVSv4+flh9uzZuHPnTnN2pU7m9PPRRx+t8Zm++uqrRnVsvZ8AsGrVKvTq1cuQNDEiIgI//PCDodwRPk+9+vrqKJ9pdUuWLIFMJsOMGTMM1xzpc9Uz1c9m+0wFsikLFiwQHnzwQSE3N9fwuH79uqH81VdfFYKCgoQ9e/YIR48eFQYOHCg8/PDDVmyxeXbu3Cn85S9/Eb7//nsBgLBp0yaj8iVLlghKpVLYvHmz8MsvvwiPP/64EBwcLNy+fdtQJzo6Wujdu7dw8OBB4eeffxa6dOkiTJgwoZl7Ur/6+jpp0iQhOjra6DMuKCgwqmMPfY2KihK+/PJLISsrS8jIyBDGjBkjdOjQQSguLjbUqe/n9c6dO0JoaKgQGRkpHD9+XNi5c6fg6+srzJ071xpdMsmcfg4dOlSYMmWK0Weq0WgM5fbQT0EQhK1btwo7duwQfv31V+HMmTPCn//8Z8HFxUXIysoSBMExPk+9+vrqKJ9pVYcPHxY6deok9OrVS3jjjTcM1x3pcxWE2vvZXJ8pAysbs2DBAqF3794mywoLCwUXFxdh48aNhmunTp0SAAhpaWnN1MLGqx5s6HQ6QaVSCe+//77hWmFhoeDm5iasX79eEARByM7OFgAIR44cMdT54YcfBJlMJly9erXZ2m6p2gKrJ554otbX2Gtf8/PzBQDC3r17BUEw7+d1586dglwuF9RqtaHOqlWrBIVCIZSVlTVvB8xUvZ+CIP6DXfUf8OrssZ96bdq0Ef71r3857OdZlb6vguB4n2lRUZHQtWtXISkpyahvjva51tZPQWi+z5RTgTbo7NmzCAwMxP3334+JEyfi0qVLAID09HRUVFQgMjLSULd79+7o0KED0tLSrNXcRsvJyYFarTbql1KpRHh4uKFfaWlp8Pb2Rr9+/Qx1IiMjIZfLcejQoWZvc2OlpKTAz88P3bp1w7Rp03Djxg1Dmb32VaPRAAB8fHwAmPfzmpaWhp49e8Lf399QJyoqClqtFidPnmzG1puvej/1vv76a/j6+iI0NBRz587FrVu3DGX22M/Kykps2LABJSUliIiIcNjPE6jZVz1H+kzj4uIQExNj9PkBjvf3tLZ+6jXHZ8pDmG1MeHg41qxZg27duiE3NxeLFi3C4MGDkZWVBbVaDVdXV3h7exu9xt/fH2q12joNloC+7VV/mPXP9WVqtRp+fn5G5c7OzvDx8bG7vkdHR+Opp55CcHAwzp8/jz//+c8YPXo00tLS4OTkZJd91el0mDFjBh555BGEhoYCgFk/r2q12uTnri+zNab6CQDPPfccOnbsiMDAQGRmZiIhIQFnzpzB999/D8C++nnixAlERESgtLQUrVu3xqZNmxASEoKMjAyH+zxr6yvgWJ/phg0bcOzYMRw5cqRGmSP9Pa2rn0DzfaYMrGzM6NGjDb/v1asXwsPD0bFjR3z77bfw8PCwYstIKuPHjzf8vmfPnujVqxc6d+6MlJQUjBgxwoota7i4uDhkZWVh37591m5Kk6qtn1OnTjX8vmfPnggICMCIESNw/vx5dO7cubmb2SjdunVDRkYGNBoNvvvuO0yaNAl79+61drOaRG19DQkJcZjP9PLly3jjjTeQlJQEd3d3azenyZjTz+b6TDkVaOO8vb3xwAMP4Ny5c1CpVCgvL0dhYaFRnby8PKhUKus0UAL6tlffhVK1XyqVCvn5+Ubld+7cQUFBgV33HQDuv/9++Pr64ty5cwDsr6/x8fHYvn07fvrpJ7Rv395w3ZyfV5VKZfJz15fZktr6aUp4eDgAGH2m9tJPV1dXdOnSBX379sXixYvRu3dvfPzxxw73eQK199UUe/1M09PTkZ+fjz59+sDZ2RnOzs7Yu3cvli9fDmdnZ/j7+zvE51pfPysrK2u8pqk+UwZWNq64uBjnz59HQEAA+vbtCxcXF+zZs8dQfubMGVy6dMloXYC9CQ4OhkqlMuqXVqvFoUOHDP2KiIhAYWEh0tPTDXWSk5Oh0+kMfzns1ZUrV3Djxg0EBAQAsJ++CoKA+Ph4bNq0CcnJyQgODjYqN+fnNSIiAidOnDAKJJOSkqBQKAxTMtZWXz9NycjIAACjz9TW+1kbnU6HsrIyh/k866Lvqyn2+pmOGDECJ06cQEZGhuHRr18/TJw40fB7R/hc6+unk5NTjdc02Wdq+Zp7akpvvvmmkJKSIuTk5Aj79+8XIiMjBV9fXyE/P18QBHFbbIcOHYTk5GTh6NGjQkREhBAREWHlVtevqKhIOH78uHD8+HEBgPDBBx8Ix48fFy5evCgIgphuwdvbW9iyZYuQmZkpPPHEEybTLTz00EPCoUOHhH379gldu3a1uRQEglB3X4uKioS33npLSEtLE3JycoTdu3cLffr0Ebp27SqUlpYa7mEPfZ02bZqgVCqFlJQUo+3Lt27dMtSp7+dVv7151KhRQkZGhpCYmCi0a9fOprZx19fPc+fOCe+++65w9OhRIScnR9iyZYtw//33C0OGDDHcwx76KQiCMGfOHGHv3r1CTk6OkJmZKcyZM0eQyWTCjz/+KAiCY3yeenX11ZE+U1Oq745zpM+1qqr9bM7PlIGVjXn22WeFgIAAwdXVVbjvvvuEZ599Vjh37pyh/Pbt28Jrr70mtGnTRmjVqpXw5JNPCrm5uVZssXl++uknAUCNx6RJkwRBEFMuzJs3T/D39xfc3NyEESNGCGfOnDG6x40bN4QJEyYIrVu3FhQKhfDSSy8JRUVFVuhN3erq661bt4RRo0YJ7dq1E1xcXISOHTsKU6ZMMdreKwj20VdTfQQgfPnll4Y65vy8XrhwQRg9erTg4eEh+Pr6Cm+++aZQUVHRzL2pXX39vHTpkjBkyBDBx8dHcHNzE7p06SLMnj3bKD+OINh+PwVBEF5++WWhY8eOgqurq9CuXTthxIgRhqBKEBzj89Srq6+O9JmaUj2wcqTPtaqq/WzOz1QmCIJg/vgWEREREdWGa6yIiIiIJMLAioiIiEgiDKyIiIiIJMLAioiIiEgiDKyIiIiIJMLAioiIiEgiDKyIiIiIJMLAioiIiEgiDKyIiGzAiy++iLFjx1q7GUTUSAysiMimvfjii5DJZFiyZInR9c2bN0Mmk1mpVQ134cIFyGQywwGwRORYGFgRkc1zd3fH0qVLcfPmTWs3hYioTgysiMjmRUZGQqVSYfHixbXW2bdvHwYPHgwPDw8EBQXh9ddfR0lJCQBgxYoVCA0NNdTVj3atXr3a6D3eeecdw/Nt27ahf//+cHd3h6+vL5588klD2X//+1/069cPXl5eUKlUeO6555Cfn28ov3nzJiZOnIh27drBw8MDXbt2xZdffgkACA4OBgA89NBDkMlkePTRR032R6fTYfHixQgODoaHhwd69+6N7777zoI/NSKyBgZWRGTznJyc8Pe//x2ffPIJrly5UqP8/PnziI6Oxrhx45CZmYlvvvkG+/btQ3x8PABg6NChyM7OxvXr1wEAe/fuha+vL1JSUgAAFRUVSEtLMwQ5O3bswJNPPokxY8bg+PHj2LNnDwYMGGB4v4qKCrz33nv45ZdfsHnzZly4cAEvvviioXzevHnIzs7GDz/8gFOnTmHVqlXw9fUFABw+fBgAsHv3buTm5uL777832efFixfjP//5D1avXo2TJ09i5syZeP7557F3795G/VkSURMTiIhs2KRJk4QnnnhCEARBGDhwoPDyyy8LgiAImzZtEvT/hE2ePFmYOnWq0et+/vlnQS6XC7dv3xZ0Op3Qtm1bYePGjYIgCEJYWJiwePFiQaVSCYIgCPv27RNcXFyEkpISQRAEISIiQpg4caLZbTxy5IgAQCgqKhIEQRBiY2OFl156yWTdnJwcAYBw/PjxWvtZWloqtGrVSjhw4IBRncmTJwsTJkwwu11E1Pw4YkVEdmPp0qX46quvcOrUKaPrv/zyC9asWYPWrVsbHlFRUdDpdMjJyYFMJsOQIUOQkpKCwsJCZGdn47XXXkNZWRlOnz6NvXv3on///mjVqhUAICMjAyNGjKi1Henp6YiNjUWHDh3g5eWFoUOHAgAuXboEAJg2bRo2bNiAsLAwvP322zhw4IBF/Tx37hxu3bqFkSNHGvXpP//5D86fP2/RvYioeTlbuwFEROYaMmQIoqKiMHfuXKOpt+LiYvzpT3/C66+/XuM1HTp0AAA8+uij+Pzzz/Hzzz/joYcegkKhMARbe/fuNQRHAODh4VFrG0pKShAVFYWoqCh8/fXXaNeuHS5duoSoqCiUl5cDAEaPHo2LFy9i586dSEpKwogRIxAXF4d//OMfZvWzuLgYgDgled999xmVubm5mXUPIrIOBlZEZFeWLFmCsLAwdOvWzXCtT58+yM7ORpcuXWp93dChQzFjxgxs3LjRsJbq0Ucfxe7du7F//368+eabhrq9evXCnj178NJLL9W4z+nTp3Hjxg0sWbIEQUFBAICjR4/WqNeuXTtMmjQJkyZNwuDBgzF79mz84x//gKurKwCgsrKy1raGhITAzc0Nly5dMgr4iMj2MbAiIrvSs2dPTJw4EcuXLzdcS0hIwMCBAxEfH49XXnkFnp6eyM7ORlJSElasWAFADJbatGmDdevWYfv27QDEwOqtt96CTCbDI488YrjfggULMGLECHTu3Bnjx4/HnTt3sHPnTiQkJKBDhw5wdXXFJ598gldffRVZWVl47733jNo4f/589O3bFw8++CDKysqwfft29OjRAwDg5+cHDw8PJCYmon379nB3d4dSqTR6vZeXF9566y3MnDkTOp0OgwYNgkajwf79+6FQKDBp0qQm+bMlosbjGisisjvvvvsudDqd4XmvXr2wd+9e/Prrrxg8eDAeeughzJ8/H4GBgYY6MpkMgwcPhkwmw6BBgwyvUygU6NevHzw9PQ11H330UWzcuBFbt25FWFgYhg8fbtjN165dO6xZswYbN25ESEgIlixZUmOKz9XVFXPnzkWvXr0wZMgQODk5YcOGDQAAZ2dnLF++HJ999hkCAwPxxBNPmOzje++9h3nz5mHx4sXo0aMHoqOjsWPHDkO6BiKyTTJBEARrN4KIiIjIEXDEioiIiEgiDKyIiIiIJMLAioiIiEgiDKyIiIiIJMLAioiIiEgiDKyIiIiIJMLAioiIiEgiDKyIiIiIJMLAioiIiEgiDKyIiIiIJMLAioiIiEgi/w+1ydlDBHZ9gAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "def myfunc(x):\n", " return slope * x + intercept\n", "\n", "\n", "mymodel = list(map(myfunc, x))\n", "\n", "plt.scatter(x, y)\n", "plt.plot(x, mymodel, color=\"orange\")\n", "plt.xlabel(\"Newcastle\")\n", "plt.ylabel(\"ICI 1\")\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.2" } }, "nbformat": 4, "nbformat_minor": 4 }