File size: 2,290 Bytes
3a34274 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
library_name: transformers
license: apache-2.0
base_model: cis-lmu/glot500-base
tags:
- generated_from_trainer
datasets:
- universal_dependencies
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: glot500_model_en_ewt
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: universal_dependencies
type: universal_dependencies
config: en_ewt
split: test
args: en_ewt
metrics:
- name: Precision
type: precision
value: 0.9400958805311612
- name: Recall
type: recall
value: 0.9420542470878327
- name: F1
type: f1
value: 0.9410740449748372
- name: Accuracy
type: accuracy
value: 0.9483660387746274
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# glot500_model_en_ewt
This model is a fine-tuned version of [cis-lmu/glot500-base](https://huggingface.co/cis-lmu/glot500-base) on the universal_dependencies dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2101
- Precision: 0.9401
- Recall: 0.9421
- F1: 0.9411
- Accuracy: 0.9484
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 1.0519 | 1.0 | 625 | 0.2891 | 0.9291 | 0.9298 | 0.9295 | 0.9396 |
| 0.2366 | 2.0 | 1250 | 0.2101 | 0.9401 | 0.9421 | 0.9411 | 0.9484 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.3
|