--- library_name: transformers license: apache-2.0 base_model: cis-lmu/glot500-base tags: - generated_from_trainer datasets: - universal_dependencies metrics: - precision - recall - f1 - accuracy model-index: - name: glot500_model_en_ewt results: - task: name: Token Classification type: token-classification dataset: name: universal_dependencies type: universal_dependencies config: en_ewt split: test args: en_ewt metrics: - name: Precision type: precision value: 0.9400958805311612 - name: Recall type: recall value: 0.9420542470878327 - name: F1 type: f1 value: 0.9410740449748372 - name: Accuracy type: accuracy value: 0.9483660387746274 --- # glot500_model_en_ewt This model is a fine-tuned version of [cis-lmu/glot500-base](https://huggingface.co/cis-lmu/glot500-base) on the universal_dependencies dataset. It achieves the following results on the evaluation set: - Loss: 0.2101 - Precision: 0.9401 - Recall: 0.9421 - F1: 0.9411 - Accuracy: 0.9484 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.0519 | 1.0 | 625 | 0.2891 | 0.9291 | 0.9298 | 0.9295 | 0.9396 | | 0.2366 | 2.0 | 1250 | 0.2101 | 0.9401 | 0.9421 | 0.9411 | 0.9484 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.20.3