--- base_model: nadsoft/Hamsa-tiny tags: - whisper-event - generated_from_trainer datasets: - nadsoft/QASR-Speech-Resource metrics: - wer model-index: - name: hamsa-tiny-pretrained results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: nadsoft/QASR-Speech-Resource default type: nadsoft/QASR-Speech-Resource metrics: - name: Wer type: wer value: 28.726358005647974 --- # hamsa-tiny-pretrained This model is a fine-tuned version of [nadsoft/Hamsa-tiny](https://huggingface.co/nadsoft/Hamsa-tiny) on the nadsoft/QASR-Speech-Resource default dataset. It achieves the following results on the evaluation set: - Loss: 0.3795 - Wer: 28.7264 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 50000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.6597 | 0.1 | 2500 | 0.6394 | 48.8384 | | 0.5442 | 0.2 | 5000 | 0.5455 | 41.8543 | | 0.4954 | 0.3 | 7500 | 0.5018 | 39.8609 | | 0.474 | 0.4 | 10000 | 0.4770 | 38.5534 | | 0.4696 | 0.5 | 12500 | 0.4566 | 36.2515 | | 0.4312 | 0.6 | 15000 | 0.4433 | 36.8780 | | 0.4208 | 0.7 | 17500 | 0.4308 | 32.3714 | | 0.4089 | 0.8 | 20000 | 0.4229 | 33.4109 | | 0.4163 | 0.9 | 22500 | 0.4143 | 32.5423 | | 0.3831 | 1.0 | 25000 | 0.4077 | 31.6951 | | 0.3842 | 1.1 | 27500 | 0.4023 | 33.6316 | | 0.3848 | 1.2 | 30000 | 0.3984 | 30.1099 | | 0.3774 | 1.3 | 32500 | 0.3948 | 29.2864 | | 0.3667 | 1.4 | 35000 | 0.3912 | 29.5166 | | 0.3674 | 1.5 | 37500 | 0.3881 | 29.6115 | | 0.3721 | 1.6 | 40000 | 0.3851 | 30.4065 | | 0.3533 | 1.7 | 42500 | 0.3834 | 27.9693 | | 0.3594 | 1.8 | 45000 | 0.3815 | 28.8569 | | 0.3628 | 1.9 | 47500 | 0.3802 | 28.1260 | | 0.3392 | 2.0 | 50000 | 0.3795 | 28.7264 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0