File size: 7,465 Bytes
06a0c26
7db9fb5
 
 
62b7ece
 
 
 
9f36e7e
 
67ffc69
8ea67d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fecf4d
8ea67d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
836db23
8ea67d8
06a0c26
62b7ece
 
 
 
70ae104
ca94405
090a4b9
 
fd534d8
090a4b9
58b4eaa
fd534d8
ca94405
d521e6e
b1d0633
d521e6e
62b7ece
d787757
 
 
62b7ece
 
 
 
 
 
 
7db9fb5
5cdeebc
62b7ece
88958f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62b7ece
 
 
 
 
 
 
 
67ffc69
62b7ece
67ffc69
62b7ece
 
67ffc69
62b7ece
 
 
 
 
 
 
 
4268c54
 
 
 
 
 
 
 
 
1fecf4d
4268c54
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
---
base_model:
- grimjim/kukulemon-7B
- Nitral-AI/Kunocchini-7b-128k-test
library_name: transformers
tags:
- mergekit
- merge
- alpaca
- mistral 
license: cc-by-nc-4.0
model-index:
- name: Kunokukulemonchini-7b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 66.72
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=icefog72/Kunokukulemonchini-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 86.31
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=icefog72/Kunokukulemonchini-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 65.31
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=icefog72/Kunokukulemonchini-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 61.89
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=icefog72/Kunokukulemonchini-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 78.45
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=icefog72/Kunokukulemonchini-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 60.20
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=icefog72/Kunokukulemonchini-7b
      name: Open LLM Leaderboard
---
# Kunokukulemonchini-7b

This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).

Here is an 4.1bpw exl2 quant [Kunokukulemonchini-7b-4.1bpw-exl2](https://huggingface.co/icefog72/Kunokukulemonchini-7b-4.1bpw-exl2) for people like me with 6gb vram.

Thx to Natkituwu for 
- 3.5bpw [Kunokukulemonchini-7b-3.5bpw-exl2](https://huggingface.co/Natkituwu/Kunokukulemonchini-7b-3.5bpw-exl2)
- 5.0bpw [Kunokukulemonchini-7b-5.0bpw-exl2](https://huggingface.co/Natkituwu/Kunokukulemonchini-7b-5.0bpw-exl2)
- 6.5bpw [Kunokukulemonchini-7b-6.5bpw-exl2](https://huggingface.co/Natkituwu/Kunokukulemonchini-7b-6.5bpw-exl2)
- 7.1bpw [Kunokukulemonchini-7b-7.1bpw-exl2](https://huggingface.co/Natkituwu/Kunokukulemonchini-7b-7.1bpw-exl2)
- 8.0bpw [Kunokukulemonchini-7b-8.0bpw-exl2](https://huggingface.co/Natkituwu/Kunokukulemonchini-7b-8.0bpw-exl2)

## Advertisement
- Check out new merge model [IceLemonTeaRP-32k-7b](https://huggingface.co/icefog72/IceLemonTeaRP-32k-7b)

## Merge Details

Slightly edited kukulemon-7B config.json before merge to get at least ~32k context window.

### Merge Method

This model was merged using the SLERP merge method.

### Models Merged

The following models were included in the merge:
* [grimjim/kukulemon-7B](https://huggingface.co/grimjim/kukulemon-7B)
* [Nitral-AI/Kunocchini-7b-128k-test](https://huggingface.co/Nitral-AI/Kunocchini-7b-128k-test)

## How to download, including from branches

### From the command line

I recommend using the `huggingface-hub` Python library:

```shell
pip3 install huggingface-hub
```

To download the `main` branch to a folder called `Kunokukulemonchini-7b`:

```shell
mkdir icefog72/Kunokukulemonchini-7b
huggingface-cli download icefog72/Kunokukulemonchini-7b --local-dir Kunokukulemonchini-7b --local-dir-use-symlinks False
```

<details>
  <summary>More advanced huggingface-cli download usage</summary>

If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.

The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`.

For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).

To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:

```shell
pip3 install hf_transfer
```

And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:

```shell
mkdir FOLDERNAME
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download MODEL --local-dir FOLDERNAME --local-dir-use-symlinks False
```

Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
</details>

### Configuration

The following YAML configuration was used to produce this model:

```yaml

slices:
  - sources:
      - model: grimjim/kukulemon-7B
        layer_range: [0, 32]
      - model: Nitral-AI/Kunocchini-7b-128k-test
        layer_range: [0, 32]
merge_method: slerp
base_model: Nitral-AI/Kunocchini-7b-128k-test
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: float16
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_icefog72__Kunokukulemonchini-7b)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |69.61|
|AI2 Reasoning Challenge (25-Shot)|66.72|
|HellaSwag (10-Shot)              |86.31|
|MMLU (5-Shot)                    |65.31|
|TruthfulQA (0-shot)              |61.89|
|Winogrande (5-shot)              |78.45|
|GSM8k (5-shot)                   |60.20|