ichsanbudiman commited on
Commit
2a3b6ae
·
verified ·
1 Parent(s): 8fd8373

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +62 -178
README.md CHANGED
@@ -1,199 +1,83 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
 
11
 
12
- ## Model Details
 
13
 
14
- ### Model Description
 
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
 
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
 
27
 
28
- ### Model Sources [optional]
 
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
 
39
 
40
- ### Direct Use
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
49
 
50
- [More Information Needed]
 
51
 
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
+ # Design Pattern Detection Model
 
 
 
2
 
3
+ This model detects software design patterns in Java source code using CodeBERT. The model has been fine-tuned for single-label classification tasks and supports the following design pattern labels:
4
 
5
+ ## Supported Labels
6
 
7
+ | Label ID | Design Pattern |
8
+ |----------|--------------------|
9
+ | 0 | Observer |
10
+ | 1 | Decorator |
11
+ | 2 | Adapter |
12
+ | 3 | Proxy |
13
+ | 4 | Singleton |
14
+ | 5 | Facade |
15
+ | 6 | AbstractFactory |
16
+ | 7 | Memento |
17
+ | 8 | FactoryMethod |
18
+ | 9 | Prototype |
19
+ | 10 | Visitor |
20
+ | 11 | Builder |
21
+ | 12 | Unknown |
22
 
23
+ ## How to Use
24
 
25
+ ```python
26
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
27
 
28
+ # Load the model and tokenizer
29
+ tokenizer = AutoTokenizer.from_pretrained("ichsanbudiman/design-pattern-detection-codebert")
30
+ model = AutoModelForSequenceClassification.from_pretrained("ichsanbudiman/design-pattern-detection-codebert")
31
 
32
+ # Example input
33
+ input_code = """
34
+ public class Singleton {
35
+ private static Singleton instance;
36
 
37
+ private Singleton() {}
38
 
39
+ public static Singleton getInstance() {
40
+ if (instance == null) {
41
+ instance = new Singleton();
42
+ }
43
+ return instance;
44
+ }
45
+ }
46
+ """
47
 
48
+ # Tokenize the input
49
+ inputs = tokenizer(input_code, return_tensors="pt", padding="max_length", truncation=True, max_length=512)
50
 
51
+ # Make predictions
52
+ with torch.no_grad():
53
+ outputs = model(**inputs)
54
 
55
+ # Get the predicted class and label
56
+ predicted_class = torch.argmax(outputs.logits, dim=1).item()
57
+ predicted_label = model.config.id2label[predicted_class]
58
 
59
+ print(f"Predicted label: {predicted_label}")
60
+ ```
61
 
62
+ ## Input Requirements
63
+ - **Input Format**: Java code snippets as strings.
64
+ - **Max Length**: Input code longer than 512 tokens will be truncated.
65
+ - **Padding**: Automatically pads to 512 tokens for batch processing.
66
 
67
+ ## Task
68
+ This model performs single-label classification for the detection of design patterns in Java source code. The supported design patterns are listed above.
69
 
70
+ ## Fine-Tuning Details
71
+ - **Base Model**: [CodeBERT](https://huggingface.co/microsoft/codebert-base)
72
+ - **Dataset**: Fine-tuned on a curated dataset of labeled Java code examples. The dataset was sourced from the following research article:
73
 
74
+ > Najam Nazar, Aldeida Aleti, Yaokun Zheng, Feature-based software design pattern detection, Journal of Systems and Software, Volume 185, 2022, 111179, ISSN 0164-1212, [https://doi.org/10.1016/j.jss.2021.111179](https://doi.org/10.1016/j.jss.2021.111179).
75
 
76
+ - **Metrics**: The model achieves high accuracy on detecting design patterns, making it suitable for software engineering tasks.
77
 
78
+ ## Contact
79
+ For inquiries or feedback, please reach out to [Ichsan Budiman](mailto:[email protected]).
80
 
81
+ ## License
82
+ This model is licensed under the Apache 2.0 License.
83