Image Classification
annanau commited on
Commit
85d9ac0
·
verified ·
1 Parent(s): e0f1a72

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -3
README.md CHANGED
@@ -1,3 +1,48 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: image-classification
3
+ license: apache-2.0
4
+ ---
5
+
6
+ # Model Card: Fine-Tuned InceptionV3 for Human Bodypart Image Classification
7
+
8
+ This CNN model was developed to perform human bodypart classification.
9
+
10
+ ## Model Details
11
+
12
+ ### Model Description
13
+
14
+ - **Funded by:** National Institute of Justice
15
+ - **Model type:** CNNs for Image Classification
16
+ - **Base Model:** InceptionV3 pretrained on ImageNet
17
+
18
+ ## Dataset
19
+
20
+ - Dataset Name: Human Decomposition Image Dataset
21
+ - Source: The dataset used in this study was obtained from the Forensic Anthropology Center (FAC) at the University of Tennessee, Knoxville, but due to privacy considerations, it is not available for public access. Please reach out to obtain access.
22
+ - Classes: 'arm', 'hand', 'foot', 'legs','fullbody','head','backside', 'torso', 'stake', 'plastic'. 'stake' and 'plastic' classes were
23
+ included for filtering out images where bodyparts are covered with plastic or images showing stake with unanonymized donor IDs,
24
+ which is often the case in forensic anthropology.
25
+
26
+ ## Usage
27
+ The stage of decay classification is bodypart specific (i.e., head, torso, or limbs), so make sure to pick the correct bodypart model.
28
+
29
+ ```python
30
+ from tensorflow.keras.models import load_model
31
+ import numpy as np
32
+ from tensorflow.keras.preprocessing.image import img_to_array, load_img
33
+
34
+ # Load the entire model
35
+ model = load_model('path_to_your_model') # e.g. head/inceptionV3 to perform stage of decay classfication of head images
36
+
37
+ # Load and preprocess an image
38
+ img = load_img('path_to_image.jpg', target_size=(299, 299)) # adjust size as per model input
39
+ img = img_to_array(img) # convert to numpy array
40
+ img = np.expand_dims(img, axis=0) # add batch dimension
41
+ img = img / 255.0 # normalize pixel values if needed
42
+
43
+ # Make predictions
44
+ predictions = model.predict(img)
45
+
46
+ # Use argmax to get the class label
47
+ predicted_class = np.argmax(predictions, axis=1)
48
+ ```