--- language: - eng license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - fyp metrics: - wer model-index: - name: Whisper Fine tuned Small results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Fyp Dataset type: fyp args: 'config: eng, split: test' metrics: - name: Wer type: wer value: 11.272359095511305 --- # Whisper Fine tuned Small This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Fyp Dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.1965 - Wer: 11.2724 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - training_steps: 102 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1398 | 0.4 | 20 | 0.2211 | 13.1623 | | 0.0941 | 0.8 | 40 | 0.2144 | 11.8124 | | 0.048 | 1.2 | 60 | 0.1997 | 11.2386 | | 0.0481 | 1.6 | 80 | 0.1979 | 11.3736 | | 0.0337 | 2.0 | 100 | 0.1965 | 11.2724 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1