igmarco commited on
Commit
6ac088f
·
1 Parent(s): be75e0a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - classification
4
+ - generated_from_trainer
5
+ datasets:
6
+ - hate_speech_offensive
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: clasificador-hate_speech_offensive-BERTweet
11
+ results:
12
+ - task:
13
+ name: Text Classification
14
+ type: text-classification
15
+ dataset:
16
+ name: hate_speech_offensive
17
+ type: hate_speech_offensive
18
+ config: default
19
+ split: train
20
+ args: default
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.9195077667944321
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # clasificador-hate_speech_offensive-BERTweet
31
+
32
+ This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the hate_speech_offensive dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.2951
35
+ - Accuracy: 0.9195
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
+ - train_batch_size: 8
56
+ - eval_batch_size: 8
57
+ - seed: 42
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - num_epochs: 3.0
61
+
62
+ ### Training results
63
+
64
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
65
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
66
+ | 0.3129 | 1.0 | 2479 | 0.3258 | 0.9112 |
67
+ | 0.2877 | 2.0 | 4958 | 0.2844 | 0.9124 |
68
+ | 0.235 | 3.0 | 7437 | 0.2951 | 0.9195 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.27.2
74
+ - Pytorch 1.13.1+cu116
75
+ - Datasets 2.10.1
76
+ - Tokenizers 0.13.2