first hugging face model push
Browse files- README.md +37 -0
- config.json +1 -0
- first_moonlander_agent.zip +3 -0
- first_moonlander_agent/_stable_baselines3_version +1 -0
- first_moonlander_agent/data +94 -0
- first_moonlander_agent/policy.optimizer.pth +3 -0
- first_moonlander_agent/policy.pth +3 -0
- first_moonlander_agent/pytorch_variables.pth +3 -0
- first_moonlander_agent/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1164.05 +/- 712.88
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0bf8950e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0bf8950ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0bf8950f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0bf8954040>", "_build": "<function ActorCriticPolicy._build at 0x7f0bf89540d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0bf8954160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0bf89541f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0bf8954280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0bf8954310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0bf89543a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0bf8954430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0bf894bba0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 32768, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670667970176772745, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALMnSL2jkcA/rgs1vptpqb3W+Ia7qH4zvQAAAAAAAAAAqpiyvpiwoj13ebO+R0Syv2UE7b16MeG+AAAAAAAAgD9tixu+P9bmPnXoEr66Ipq/LNevvUoAyjwAAAAAAAAAACZM1L1DHdE/gPu2vn9Yvrxle54+c3srPgAAAAAAAAAAM64DPvuaoj73uKE+RJOpv+Segb4/HQq+AAAAAAAAAABmFjI787tdP2hd5b1HX1m/KZiCPoksMT4AAAAAAAAAAADQ4TxzprQ/SvzmPgWJVb3X5xK9Qc+XvQAAAAAAAAAAzbItPCIZrT/uYO897vLKvmRjybwj0iK9AAAAAAAAAACLzL6+t18/P7R6hr/Sem+/+K4IPwo3gz4AAAAAAAAAAI24dz6PUTA9Bp6WPiPNwb+X03s+NZkHPwAAAAAAAAAADX0svt5HgT/Gmi2/NphZv6naRj6F+Oc9AAAAAAAAAAD+Kc2+pb9kPyKhS78860+/7GnMPW4djrwAAAAAAAAAADMzRzuuHas/KyyEPZFMr77dYKa9YkVWvgAAAAAAAAAA8135PvPaFT9nDI8/XG6Dv7laKr/7AZu+AAAAAAAAAACaKMu9on9/P3Dfeb4TeTK/9XuovQiNvL0AAAAAAAAAAM1ENzz3gzo/eqL4uqIPer9psaM9Z/KavQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -2.2768, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+rMfKSKXR8CUhpRSlIwBbJRLVYwBdJRHQGY1UZFXq7l1fZQoaAZoCWgPQwiSWiiZnP13wJSGlFKUaBVLZmgWR0BmNceGO+7EdX2UKGgGaAloD0MIt7bwvFSEcsCUhpRSlGgVS2xoFkdAZjX6SDAaenV9lChoBmgJaA9DCAiT4uMTgnzAlIaUUpRoFUtraBZHQGY150r9VFR1fZQoaAZoCWgPQwhtxf6ye5ZUwJSGlFKUaBVLW2gWR0BmNkrXlKbsdX2UKGgGaAloD0MI/5O/e4cfeMCUhpRSlGgVS3doFkdAZjdWYnfEXXV9lChoBmgJaA9DCK+zIf+MLnfAlIaUUpRoFUtyaBZHQGY3fSH/Lkl1fZQoaAZoCWgPQwi8zRsnhd9XwJSGlFKUaBVLWWgWR0BmOCw8nuzAdX2UKGgGaAloD0MI4PJYM7ITYcCUhpRSlGgVS1JoFkdAZjmr9VFQVXV9lChoBmgJaA9DCKDE504wZG3AlIaUUpRoFUtcaBZHQGY6WQwK0D51fZQoaAZoCWgPQwgUQZyHExpawJSGlFKUaBVLTmgWR0BmO0mtyPuHdX2UKGgGaAloD0MIYOemzTggYcCUhpRSlGgVS2poFkdAZjtLnLaEjHV9lChoBmgJaA9DCAMkmkARHmzAlIaUUpRoFUtcaBZHQGY7QAdXDFZ1fZQoaAZoCWgPQwgNNnUelXh0wJSGlFKUaBVLlGgWR0BmO9vQ4S6EdX2UKGgGaAloD0MIhEawcf3eW8CUhpRSlGgVS0loFkdAZjxP557gKnV9lChoBmgJaA9DCGcKndfYw1/AlIaUUpRoFUt+aBZHQGY8/CQ9zOp1fZQoaAZoCWgPQwjwplt2iOdbwJSGlFKUaBVLS2gWR0BmPeKVII4VdX2UKGgGaAloD0MIDqFKzR6EVMCUhpRSlGgVS05oFkdAZj5L5hz/63V9lChoBmgJaA9DCAcI5uhxTmrAlIaUUpRoFUtbaBZHQGY/KrR0EHN1fZQoaAZoCWgPQwhwehfvx0JZwJSGlFKUaBVLVmgWR0BmQJwqAjIJdX2UKGgGaAloD0MIvALRkzIsaMCUhpRSlGgVS2BoFkdAZkCnkT6BRXV9lChoBmgJaA9DCBEebRyxZFPAlIaUUpRoFUtEaBZHQGZBKLKmsNl1fZQoaAZoCWgPQwgoZVJDG+BWwJSGlFKUaBVLV2gWR0BmQaNjslcAdX2UKGgGaAloD0MIi8BY38D0WcCUhpRSlGgVS0JoFkdAZkGE6kqMFXV9lChoBmgJaA9DCIlFDDuMnnHAlIaUUpRoFUt0aBZHQGZChd2PkrB1fZQoaAZoCWgPQwhfuHNhpKNQwJSGlFKUaBVLOmgWR0BmQo3974SIdX2UKGgGaAloD0MIb/JbdLLsYcCUhpRSlGgVS0xoFkdAZkNvjwQUYnV9lChoBmgJaA9DCAU25+AZMWvAlIaUUpRoFUtxaBZHQGZDsfJV81J1fZQoaAZoCWgPQwjcuTDSi+9ewJSGlFKUaBVLSWgWR0BmRN7rs0HhdX2UKGgGaAloD0MIYFYo0r3QdsCUhpRSlGgVS1poFkdAZkTpBX0Xg3V9lChoBmgJaA9DCGUaTS7G9lTAlIaUUpRoFUtcaBZHQGZFMDGLk0d1fZQoaAZoCWgPQwglz/V9OH5PwJSGlFKUaBVLSWgWR0BmRcr/bTMJdX2UKGgGaAloD0MIQ5JZvUOZccCUhpRSlGgVS2BoFkdAZkYp0fYBeXV9lChoBmgJaA9DCN4CCYofKHzAlIaUUpRoFUtUaBZHQGZHe0PYnOV1fZQoaAZoCWgPQwjcZ5WZ0rVqwJSGlFKUaBVLR2gWR0BmSNpyp71JdX2UKGgGaAloD0MI2c9iKZK4Z8CUhpRSlGgVS09oFkdAZkkz544ZM3V9lChoBmgJaA9DCLtDigESa2LAlIaUUpRoFUtCaBZHQGZJsdcSoOx1fZQoaAZoCWgPQwgOMV7zqmlewJSGlFKUaBVLYWgWR0BmSbwDvE0jdX2UKGgGaAloD0MIlDR/TOueYMCUhpRSlGgVS01oFkdAZknjG1hLG3V9lChoBmgJaA9DCGvwviqXsWLAlIaUUpRoFUtIaBZHQGZKeHrQgLZ1fZQoaAZoCWgPQwiISE27mLJOwJSGlFKUaBVLO2gWR0BmS1kpZwGXdX2UKGgGaAloD0MIvady2tM0Y8CUhpRSlGgVS3NoFkdAZk0sPrfLtHV9lChoBmgJaA9DCOUl/5M/FGHAlIaUUpRoFUtwaBZHQGZN0mMOwxF1fZQoaAZoCWgPQwg82c2MfhFywJSGlFKUaBVLYGgWR0BmTe2d/axpdX2UKGgGaAloD0MI26M33Mf/ccCUhpRSlGgVS2BoFkdAZk9YKYzBRHV9lChoBmgJaA9DCG/2B8ptVlLAlIaUUpRoFUtBaBZHQGZP9W6shgV1fZQoaAZoCWgPQwibj2tDxblowJSGlFKUaBVLcmgWR0BmUCOHWSU1dX2UKGgGaAloD0MIZhGKraDIUMCUhpRSlGgVS0BoFkdAZlC3R5TqB3V9lChoBmgJaA9DCJWBA1o6k2HAlIaUUpRoFUtHaBZHQGZRhQFcIJJ1fZQoaAZoCWgPQwgijQqcbIMmQJSGlFKUaBVLQ2gWR0BmUcPpY9xIdX2UKGgGaAloD0MIjuvf9Vm0dMCUhpRSlGgVS2JoFkdAZlIuNgjQiXV9lChoBmgJaA9DCKYol8YviE/AlIaUUpRoFUt2aBZHQGZSJN0vGqB1fZQoaAZoCWgPQwjrVzofnlhjwJSGlFKUaBVLc2gWR0BmUsvqTr3TdX2UKGgGaAloD0MIxapBmJvudsCUhpRSlGgVS1toFkdAZlMs+V1OkHV9lChoBmgJaA9DCIuk3ehjN1nAlIaUUpRoFUuAaBZHQGZTwLNOdoZ1fZQoaAZoCWgPQwhqGD4iJglqwJSGlFKUaBVLPmgWR0BmVKdH2AXmdX2UKGgGaAloD0MIsKnzqPgSWMCUhpRSlGgVS0toFkdAZlXnFo+OfnV9lChoBmgJaA9DCEs+dhfonnnAlIaUUpRoFUtaaBZHQGZW5LZi/fx1fZQoaAZoCWgPQwgsDfyoxpJ3wJSGlFKUaBVLeWgWR0BmWJaV2Rq5dX2UKGgGaAloD0MIMc7fhMILYcCUhpRSlGgVS1NoFkdAZliHZ9NN8HV9lChoBmgJaA9DCGafxygPMHXAlIaUUpRoFUtVaBZHQGZZWnjyWiV1fZQoaAZoCWgPQwi9GqA01MdbwJSGlFKUaBVLWmgWR0BmWhUrCm/GdX2UKGgGaAloD0MI3bJD/MNW9T+UhpRSlGgVS5VoFkdAZlpHOKO1fHV9lChoBmgJaA9DCDBGJAotLWTAlIaUUpRoFUtMaBZHQGZahX8wYch1fZQoaAZoCWgPQwhuMqoM485XwJSGlFKUaBVLQWgWR0BmWwYixFAndX2UKGgGaAloD0MIrDyBsFNsXMCUhpRSlGgVS2FoFkdAZltrNW2gF3V9lChoBmgJaA9DCLIRiNf1l2XAlIaUUpRoFUtYaBZHQGZcdJJ5E+h1fZQoaAZoCWgPQwjXh/VGrbtTwJSGlFKUaBVLTmgWR0BmXUwWWQfZdX2UKGgGaAloD0MIQwBw7NnIW8CUhpRSlGgVS21oFkdAZl4foRqXW3V9lChoBmgJaA9DCBKGAUuuR1bAlIaUUpRoFUtyaBZHQGZeCZ4Oc2B1fZQoaAZoCWgPQwhO7QxTW1RMwJSGlFKUaBVLQmgWR0BmYI7tAs06dX2UKGgGaAloD0MIEtpyLkWDZMCUhpRSlGgVS4doFkdAZmCRSP2f03V9lChoBmgJaA9DCA2oN6Nmk33AlIaUUpRoFUtoaBZHQGZhe6RQrMF1fZQoaAZoCWgPQwjWbyamiwFlwJSGlFKUaBVLhGgWR0BmYbH0btJGdX2UKGgGaAloD0MIN8MN+HzXZ8CUhpRSlGgVSztoFkdAZmHejVQQ+XV9lChoBmgJaA9DCFIpdjQOmV3AlIaUUpRoFUtLaBZHQGZjIWYWtU51fZQoaAZoCWgPQwh/+s+aH8FWwJSGlFKUaBVLT2gWR0BmYxG+bmU4dX2UKGgGaAloD0MI7bd2omSqesCUhpRSlGgVS2poFkdAZmQv6CUX53V9lChoBmgJaA9DCI8aE2KuQmPAlIaUUpRoFUt7aBZHQGZkitihFmZ1fZQoaAZoCWgPQwiJYYcxKThwwJSGlFKUaBVLb2gWR0BmZKuZCv5hdX2UKGgGaAloD0MICRaHM7+yYcCUhpRSlGgVS2loFkdAZmWow22oenV9lChoBmgJaA9DCNAlHHoLY2HAlIaUUpRoFUtuaBZHQGZmC+10DEF1fZQoaAZoCWgPQwhGzVfJx7RRwJSGlFKUaBVLSWgWR0BmZfhddE9ddX2UKGgGaAloD0MIDvj8MEJbY8CUhpRSlGgVS2VoFkdAZmexgRbr1XV9lChoBmgJaA9DCFkw8UdRgFrAlIaUUpRoFUtdaBZHQGZnsdLg4wR1fZQoaAZoCWgPQwhTXcDLDMB+wJSGlFKUaBVLWmgWR0BmaCv3ai9JdX2UKGgGaAloD0MIF/NzQ1O0YcCUhpRSlGgVS01oFkdAZmn31zySWHV9lChoBmgJaA9DCLfPKjOl4FfAlIaUUpRoFUtEaBZHQGZqslkYoAp1fZQoaAZoCWgPQwjF5A0w84FqwJSGlFKUaBVLYmgWR0Bma1m4AjptdX2UKGgGaAloD0MII9xkVJljYsCUhpRSlGgVS1JoFkdAZmwnO0LMLXV9lChoBmgJaA9DCF5KXTKOOHDAlIaUUpRoFUtraBZHQGZsXyiEg4h1fZQoaAZoCWgPQwjTvySVqVRiwJSGlFKUaBVLTWgWR0BmbRb0OEuhdX2UKGgGaAloD0MIZwxzgjZeXcCUhpRSlGgVS2loFkdAZm1JKaoddXV9lChoBmgJaA9DCHr7c9GQCWTAlIaUUpRoFUtPaBZHQGZtcjJMg2Z1fZQoaAZoCWgPQwg8a7ddaGlbwJSGlFKUaBVLS2gWR0BmbkpI+W4WdX2UKGgGaAloD0MIrYcvE8X/ZcCUhpRSlGgVS3ZoFkdAZm7QhwEQoXV9lChoBmgJaA9DCCBdbFopCE/AlIaUUpRoFUtFaBZHQGZvFbeMyad1fZQoaAZoCWgPQwjk2lAxTulgwJSGlFKUaBVLYWgWR0BmcFQZXMhYdX2UKGgGaAloD0MIVwirsQRUa8CUhpRSlGgVS2NoFkdAZnD2HtWuHXV9lChoBmgJaA9DCC8WhsjpynLAlIaUUpRoFUtVaBZHQGZxUWdmQKd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 10, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
first_moonlander_agent.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72d4ebc80cd08d50275ac87a7115a42372a3eee1fcbc6bd7a884f8bd57b845e7
|
3 |
+
size 147066
|
first_moonlander_agent/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
first_moonlander_agent/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f0bf8950e50>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0bf8950ee0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0bf8950f70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0bf8954040>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f0bf89540d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f0bf8954160>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0bf89541f0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f0bf8954280>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0bf8954310>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0bf89543a0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0bf8954430>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f0bf894bba0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 32768,
|
46 |
+
"_total_timesteps": 10000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1670667970176772745,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALMnSL2jkcA/rgs1vptpqb3W+Ia7qH4zvQAAAAAAAAAAqpiyvpiwoj13ebO+R0Syv2UE7b16MeG+AAAAAAAAgD9tixu+P9bmPnXoEr66Ipq/LNevvUoAyjwAAAAAAAAAACZM1L1DHdE/gPu2vn9Yvrxle54+c3srPgAAAAAAAAAAM64DPvuaoj73uKE+RJOpv+Segb4/HQq+AAAAAAAAAABmFjI787tdP2hd5b1HX1m/KZiCPoksMT4AAAAAAAAAAADQ4TxzprQ/SvzmPgWJVb3X5xK9Qc+XvQAAAAAAAAAAzbItPCIZrT/uYO897vLKvmRjybwj0iK9AAAAAAAAAACLzL6+t18/P7R6hr/Sem+/+K4IPwo3gz4AAAAAAAAAAI24dz6PUTA9Bp6WPiPNwb+X03s+NZkHPwAAAAAAAAAADX0svt5HgT/Gmi2/NphZv6naRj6F+Oc9AAAAAAAAAAD+Kc2+pb9kPyKhS78860+/7GnMPW4djrwAAAAAAAAAADMzRzuuHas/KyyEPZFMr77dYKa9YkVWvgAAAAAAAAAA8135PvPaFT9nDI8/XG6Dv7laKr/7AZu+AAAAAAAAAACaKMu9on9/P3Dfeb4TeTK/9XuovQiNvL0AAAAAAAAAAM1ENzz3gzo/eqL4uqIPer9psaM9Z/KavQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -2.2768,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+rMfKSKXR8CUhpRSlIwBbJRLVYwBdJRHQGY1UZFXq7l1fZQoaAZoCWgPQwiSWiiZnP13wJSGlFKUaBVLZmgWR0BmNceGO+7EdX2UKGgGaAloD0MIt7bwvFSEcsCUhpRSlGgVS2xoFkdAZjX6SDAaenV9lChoBmgJaA9DCAiT4uMTgnzAlIaUUpRoFUtraBZHQGY150r9VFR1fZQoaAZoCWgPQwhtxf6ye5ZUwJSGlFKUaBVLW2gWR0BmNkrXlKbsdX2UKGgGaAloD0MI/5O/e4cfeMCUhpRSlGgVS3doFkdAZjdWYnfEXXV9lChoBmgJaA9DCK+zIf+MLnfAlIaUUpRoFUtyaBZHQGY3fSH/Lkl1fZQoaAZoCWgPQwi8zRsnhd9XwJSGlFKUaBVLWWgWR0BmOCw8nuzAdX2UKGgGaAloD0MI4PJYM7ITYcCUhpRSlGgVS1JoFkdAZjmr9VFQVXV9lChoBmgJaA9DCKDE504wZG3AlIaUUpRoFUtcaBZHQGY6WQwK0D51fZQoaAZoCWgPQwgUQZyHExpawJSGlFKUaBVLTmgWR0BmO0mtyPuHdX2UKGgGaAloD0MIYOemzTggYcCUhpRSlGgVS2poFkdAZjtLnLaEjHV9lChoBmgJaA9DCAMkmkARHmzAlIaUUpRoFUtcaBZHQGY7QAdXDFZ1fZQoaAZoCWgPQwgNNnUelXh0wJSGlFKUaBVLlGgWR0BmO9vQ4S6EdX2UKGgGaAloD0MIhEawcf3eW8CUhpRSlGgVS0loFkdAZjxP557gKnV9lChoBmgJaA9DCGcKndfYw1/AlIaUUpRoFUt+aBZHQGY8/CQ9zOp1fZQoaAZoCWgPQwjwplt2iOdbwJSGlFKUaBVLS2gWR0BmPeKVII4VdX2UKGgGaAloD0MIDqFKzR6EVMCUhpRSlGgVS05oFkdAZj5L5hz/63V9lChoBmgJaA9DCAcI5uhxTmrAlIaUUpRoFUtbaBZHQGY/KrR0EHN1fZQoaAZoCWgPQwhwehfvx0JZwJSGlFKUaBVLVmgWR0BmQJwqAjIJdX2UKGgGaAloD0MIvALRkzIsaMCUhpRSlGgVS2BoFkdAZkCnkT6BRXV9lChoBmgJaA9DCBEebRyxZFPAlIaUUpRoFUtEaBZHQGZBKLKmsNl1fZQoaAZoCWgPQwgoZVJDG+BWwJSGlFKUaBVLV2gWR0BmQaNjslcAdX2UKGgGaAloD0MIi8BY38D0WcCUhpRSlGgVS0JoFkdAZkGE6kqMFXV9lChoBmgJaA9DCIlFDDuMnnHAlIaUUpRoFUt0aBZHQGZChd2PkrB1fZQoaAZoCWgPQwhfuHNhpKNQwJSGlFKUaBVLOmgWR0BmQo3974SIdX2UKGgGaAloD0MIb/JbdLLsYcCUhpRSlGgVS0xoFkdAZkNvjwQUYnV9lChoBmgJaA9DCAU25+AZMWvAlIaUUpRoFUtxaBZHQGZDsfJV81J1fZQoaAZoCWgPQwjcuTDSi+9ewJSGlFKUaBVLSWgWR0BmRN7rs0HhdX2UKGgGaAloD0MIYFYo0r3QdsCUhpRSlGgVS1poFkdAZkTpBX0Xg3V9lChoBmgJaA9DCGUaTS7G9lTAlIaUUpRoFUtcaBZHQGZFMDGLk0d1fZQoaAZoCWgPQwglz/V9OH5PwJSGlFKUaBVLSWgWR0BmRcr/bTMJdX2UKGgGaAloD0MIQ5JZvUOZccCUhpRSlGgVS2BoFkdAZkYp0fYBeXV9lChoBmgJaA9DCN4CCYofKHzAlIaUUpRoFUtUaBZHQGZHe0PYnOV1fZQoaAZoCWgPQwjcZ5WZ0rVqwJSGlFKUaBVLR2gWR0BmSNpyp71JdX2UKGgGaAloD0MI2c9iKZK4Z8CUhpRSlGgVS09oFkdAZkkz544ZM3V9lChoBmgJaA9DCLtDigESa2LAlIaUUpRoFUtCaBZHQGZJsdcSoOx1fZQoaAZoCWgPQwgOMV7zqmlewJSGlFKUaBVLYWgWR0BmSbwDvE0jdX2UKGgGaAloD0MIlDR/TOueYMCUhpRSlGgVS01oFkdAZknjG1hLG3V9lChoBmgJaA9DCGvwviqXsWLAlIaUUpRoFUtIaBZHQGZKeHrQgLZ1fZQoaAZoCWgPQwiISE27mLJOwJSGlFKUaBVLO2gWR0BmS1kpZwGXdX2UKGgGaAloD0MIvady2tM0Y8CUhpRSlGgVS3NoFkdAZk0sPrfLtHV9lChoBmgJaA9DCOUl/5M/FGHAlIaUUpRoFUtwaBZHQGZN0mMOwxF1fZQoaAZoCWgPQwg82c2MfhFywJSGlFKUaBVLYGgWR0BmTe2d/axpdX2UKGgGaAloD0MI26M33Mf/ccCUhpRSlGgVS2BoFkdAZk9YKYzBRHV9lChoBmgJaA9DCG/2B8ptVlLAlIaUUpRoFUtBaBZHQGZP9W6shgV1fZQoaAZoCWgPQwibj2tDxblowJSGlFKUaBVLcmgWR0BmUCOHWSU1dX2UKGgGaAloD0MIZhGKraDIUMCUhpRSlGgVS0BoFkdAZlC3R5TqB3V9lChoBmgJaA9DCJWBA1o6k2HAlIaUUpRoFUtHaBZHQGZRhQFcIJJ1fZQoaAZoCWgPQwgijQqcbIMmQJSGlFKUaBVLQ2gWR0BmUcPpY9xIdX2UKGgGaAloD0MIjuvf9Vm0dMCUhpRSlGgVS2JoFkdAZlIuNgjQiXV9lChoBmgJaA9DCKYol8YviE/AlIaUUpRoFUt2aBZHQGZSJN0vGqB1fZQoaAZoCWgPQwjrVzofnlhjwJSGlFKUaBVLc2gWR0BmUsvqTr3TdX2UKGgGaAloD0MIxapBmJvudsCUhpRSlGgVS1toFkdAZlMs+V1OkHV9lChoBmgJaA9DCIuk3ehjN1nAlIaUUpRoFUuAaBZHQGZTwLNOdoZ1fZQoaAZoCWgPQwhqGD4iJglqwJSGlFKUaBVLPmgWR0BmVKdH2AXmdX2UKGgGaAloD0MIsKnzqPgSWMCUhpRSlGgVS0toFkdAZlXnFo+OfnV9lChoBmgJaA9DCEs+dhfonnnAlIaUUpRoFUtaaBZHQGZW5LZi/fx1fZQoaAZoCWgPQwgsDfyoxpJ3wJSGlFKUaBVLeWgWR0BmWJaV2Rq5dX2UKGgGaAloD0MIMc7fhMILYcCUhpRSlGgVS1NoFkdAZliHZ9NN8HV9lChoBmgJaA9DCGafxygPMHXAlIaUUpRoFUtVaBZHQGZZWnjyWiV1fZQoaAZoCWgPQwi9GqA01MdbwJSGlFKUaBVLWmgWR0BmWhUrCm/GdX2UKGgGaAloD0MI3bJD/MNW9T+UhpRSlGgVS5VoFkdAZlpHOKO1fHV9lChoBmgJaA9DCDBGJAotLWTAlIaUUpRoFUtMaBZHQGZahX8wYch1fZQoaAZoCWgPQwhuMqoM485XwJSGlFKUaBVLQWgWR0BmWwYixFAndX2UKGgGaAloD0MIrDyBsFNsXMCUhpRSlGgVS2FoFkdAZltrNW2gF3V9lChoBmgJaA9DCLIRiNf1l2XAlIaUUpRoFUtYaBZHQGZcdJJ5E+h1fZQoaAZoCWgPQwjXh/VGrbtTwJSGlFKUaBVLTmgWR0BmXUwWWQfZdX2UKGgGaAloD0MIQwBw7NnIW8CUhpRSlGgVS21oFkdAZl4foRqXW3V9lChoBmgJaA9DCBKGAUuuR1bAlIaUUpRoFUtyaBZHQGZeCZ4Oc2B1fZQoaAZoCWgPQwhO7QxTW1RMwJSGlFKUaBVLQmgWR0BmYI7tAs06dX2UKGgGaAloD0MIEtpyLkWDZMCUhpRSlGgVS4doFkdAZmCRSP2f03V9lChoBmgJaA9DCA2oN6Nmk33AlIaUUpRoFUtoaBZHQGZhe6RQrMF1fZQoaAZoCWgPQwjWbyamiwFlwJSGlFKUaBVLhGgWR0BmYbH0btJGdX2UKGgGaAloD0MIN8MN+HzXZ8CUhpRSlGgVSztoFkdAZmHejVQQ+XV9lChoBmgJaA9DCFIpdjQOmV3AlIaUUpRoFUtLaBZHQGZjIWYWtU51fZQoaAZoCWgPQwh/+s+aH8FWwJSGlFKUaBVLT2gWR0BmYxG+bmU4dX2UKGgGaAloD0MI7bd2omSqesCUhpRSlGgVS2poFkdAZmQv6CUX53V9lChoBmgJaA9DCI8aE2KuQmPAlIaUUpRoFUt7aBZHQGZkitihFmZ1fZQoaAZoCWgPQwiJYYcxKThwwJSGlFKUaBVLb2gWR0BmZKuZCv5hdX2UKGgGaAloD0MICRaHM7+yYcCUhpRSlGgVS2loFkdAZmWow22oenV9lChoBmgJaA9DCNAlHHoLY2HAlIaUUpRoFUtuaBZHQGZmC+10DEF1fZQoaAZoCWgPQwhGzVfJx7RRwJSGlFKUaBVLSWgWR0BmZfhddE9ddX2UKGgGaAloD0MIDvj8MEJbY8CUhpRSlGgVS2VoFkdAZmexgRbr1XV9lChoBmgJaA9DCFkw8UdRgFrAlIaUUpRoFUtdaBZHQGZnsdLg4wR1fZQoaAZoCWgPQwhTXcDLDMB+wJSGlFKUaBVLWmgWR0BmaCv3ai9JdX2UKGgGaAloD0MIF/NzQ1O0YcCUhpRSlGgVS01oFkdAZmn31zySWHV9lChoBmgJaA9DCLfPKjOl4FfAlIaUUpRoFUtEaBZHQGZqslkYoAp1fZQoaAZoCWgPQwjF5A0w84FqwJSGlFKUaBVLYmgWR0Bma1m4AjptdX2UKGgGaAloD0MII9xkVJljYsCUhpRSlGgVS1JoFkdAZmwnO0LMLXV9lChoBmgJaA9DCF5KXTKOOHDAlIaUUpRoFUtraBZHQGZsXyiEg4h1fZQoaAZoCWgPQwjTvySVqVRiwJSGlFKUaBVLTWgWR0BmbRb0OEuhdX2UKGgGaAloD0MIZwxzgjZeXcCUhpRSlGgVS2loFkdAZm1JKaoddXV9lChoBmgJaA9DCHr7c9GQCWTAlIaUUpRoFUtPaBZHQGZtcjJMg2Z1fZQoaAZoCWgPQwg8a7ddaGlbwJSGlFKUaBVLS2gWR0BmbkpI+W4WdX2UKGgGaAloD0MIrYcvE8X/ZcCUhpRSlGgVS3ZoFkdAZm7QhwEQoXV9lChoBmgJaA9DCCBdbFopCE/AlIaUUpRoFUtFaBZHQGZvFbeMyad1fZQoaAZoCWgPQwjk2lAxTulgwJSGlFKUaBVLYWgWR0BmcFQZXMhYdX2UKGgGaAloD0MIVwirsQRUa8CUhpRSlGgVS2NoFkdAZnD2HtWuHXV9lChoBmgJaA9DCC8WhsjpynLAlIaUUpRoFUtVaBZHQGZxUWdmQKd1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 10,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
first_moonlander_agent/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf1eb592d86fc717fe2328a37b0b2e2781f4c02954ce2f5ce364e9796e42267c
|
3 |
+
size 87929
|
first_moonlander_agent/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9ed6b45dfa9647436c80cdf9b903dd29af522672bc86503d2f44ed495467b48
|
3 |
+
size 43201
|
first_moonlander_agent/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
first_moonlander_agent/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (80.9 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1164.0536779319868, "std_reward": 712.8847501471479, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-10T10:49:29.823110"}
|