File size: 2,755 Bytes
9b47860 0b6dbdf 9b47860 040cd36 0b6dbdf a0b7860 0b6dbdf 9b47860 cece5df 9b47860 63f9633 9b47860 a0b7860 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
language:
- ru
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
widget:
- text: Однажды я посетил прекрасный городок в горах. На его улицах росли удивительные
цветы.
example_title: Example_1
pipeline_tag: token-classification
base_model: DeepPavlov/rubert-base-cased
model-index:
- name: rubert-base-cased-token
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# rubert-base-cased-token
This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on the OpenCorpora dataset [opencorpora.org](http://opencorpora.org/).
It achieves the following results on the evaluation set:
- Loss: 0.2595
- Precision: 0.9304
- Recall: 0.9334
- F1: 0.9319
- Accuracy: 0.9424
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
Tokens classification from OpenCorpora: [opencorpora.org](http://opencorpora.org/dict.php?act=gram)
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 69 | 0.6926 | 0.7731 | 0.7674 | 0.7702 | 0.8200 |
| No log | 2.0 | 138 | 0.3744 | 0.8665 | 0.8807 | 0.8735 | 0.9003 |
| No log | 3.0 | 207 | 0.2891 | 0.9004 | 0.9071 | 0.9037 | 0.9231 |
| No log | 4.0 | 276 | 0.2566 | 0.9123 | 0.9217 | 0.9170 | 0.9327 |
| No log | 5.0 | 345 | 0.2587 | 0.9211 | 0.9255 | 0.9233 | 0.9366 |
| No log | 6.0 | 414 | 0.2472 | 0.9264 | 0.9289 | 0.9276 | 0.9401 |
| No log | 7.0 | 483 | 0.2589 | 0.9267 | 0.9313 | 0.9290 | 0.9406 |
| 0.3825 | 8.0 | 552 | 0.2559 | 0.9286 | 0.9334 | 0.9310 | 0.9416 |
| 0.3825 | 9.0 | 621 | 0.2578 | 0.9304 | 0.9339 | 0.9321 | 0.9425 |
| 0.3825 | 10.0 | 690 | 0.2595 | 0.9304 | 0.9334 | 0.9319 | 0.9424 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2 |