--- license: mit language: - multilingual base_model: - FacebookAI/xlm-roberta-large pipeline_tag: token-classification --- # Multilingual Identification of English Code-Switching AnE-NER (Any-English Code-Switching Named Entity Recognition) is a token-level model for detecting named entities in code-switching texts. It classifies words into two classes: `I` (inside a named entity) and `O` (outside a named entity). The model shows strong performance on both languages seen and unseen in the training data. # Usage You can use AnE-NER with Huggingface’s `pipeline` or `AutoModelForTokenClassification`. Let's try the following example (taken from [this](https://aclanthology.org/W18-3213/) paper) ```python input = "My Facebook, Ig & Twitter is hellaa dead yall Jk soy yo que has no life!" ``` ## Pipeline ```python from transformers import pipeline classifier = pipeline("token-classification", model="igorsterner/AnE-NER", aggregation_strategy="simple") result = classifier(input) ``` which returns ``` [{'entity_group': 'I', 'score': 0.95482016, 'word': 'Facebook', 'start': 3, 'end': 11}, {'entity_group': 'I', 'score': 0.9638739, 'word': 'Ig', 'start': 13, 'end': 15}, {'entity_group': 'I', 'score': 0.98207414, 'word': 'Twitter', 'start': 18, 'end': 25}] ``` ## Advanced If your input is already word-tokenized, and you want the corresponding word NER labels, you can try the following strategy ```python import torch from transformers import AutoModelForTokenClassification, AutoTokenizer lid_model_name = "igorsterner/AnE-NER" lid_tokenizer = AutoTokenizer.from_pretrained(lid_model_name) lid_model = AutoModelForTokenClassification.from_pretrained(lid_model_name) word_tokens = ['My', 'Facebook', ',', 'Ig', '&', 'Twitter', 'is', 'hellaa', 'dead', 'yall', 'Jk', 'soy', 'yo', 'que', 'has', 'no', 'life', '!'] subword_inputs = lid_tokenizer( word_tokens, truncation=True, is_split_into_words=True, return_tensors="pt" ) subword2word = subword_inputs.word_ids(batch_index=0) logits = lid_model(**subword_inputs).logits predictions = torch.argmax(logits, dim=2) predicted_subword_labels = [lid_model.config.id2label[t.item()] for t in predictions[0]] predicted_word_labels = [[] for _ in range(len(word_tokens))] for idx, predicted_subword in enumerate(predicted_subword_labels): if subword2word[idx] is not None: predicted_word_labels[subword2word[idx]].append(predicted_subword) def most_frequent(lst): return max(set(lst), key=lst.count) if lst else "Other" predicted_word_labels = [most_frequent(sublist) for sublist in predicted_word_labels] for token, label in zip(word_tokens, predicted_word_labels): print(f"{token}: {label}") ``` which returns ``` My: O Facebook: I ,: O Ig: I &: O Twitter: I is: O hellaa: O dead: O yall: O Jk: O soy: O yo: O que: O has: O no: O life!: O ``` # Word-level language labels If you also want the language of each word, you can additionaly run [AnE-LID](https://huggingface.co/igorsterner/ane-lid). Checkout my evaluation scripts for examples of using both at the same time, as we did in the paper: [https://github.com/igorsterner/AnE/tree/main/eval](https://github.com/igorsterner/AnE/tree/main/eval). For the above example, you can get: ``` My: English Facebook: NE.English ,: Other Ig: NE.English &: Other Twitter: NE.English is: English hellaa: English dead: English yall: English Jk: English soy: notEnglish yo: notEnglish que: notEnglish has: English no: English life: English !: Other ``` # Citation Please consider citing my work if it helped you ``` @inproceedings{sterner-2024-multilingual, title = "Multilingual Identification of {E}nglish Code-Switching", author = "Sterner, Igor", editor = {Scherrer, Yves and Jauhiainen, Tommi and Ljube{\v{s}}i{\'c}, Nikola and Zampieri, Marcos and Nakov, Preslav and Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Eleventh Workshop on NLP for Similar Languages, Varieties, and Dialects (VarDial 2024)", month = jun, year = "2024", address = "Mexico City, Mexico", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2024.vardial-1.14", doi = "10.18653/v1/2024.vardial-1.14", pages = "163--173", abstract = "Code-switching research depends on fine-grained language identification. In this work, we study existing corpora used to train token-level language identification systems. We aggregate these corpora with a consistent labelling scheme and train a system to identify English code-switching in multilingual text. We show that the system identifies code-switching in unseen language pairs with absolute measure 2.3-4.6{\%} better than language-pair-specific SoTA. We also analyse the correlation between typological similarity of the languages and difficulty in recognizing code-switching.", } ```