|
import torch |
|
import cv2 |
|
import os |
|
import threading |
|
from PIL import Image |
|
import sys |
|
sys.path.insert(0, 'E:/studio Dropbox/studio/ai/libs/notes') |
|
|
|
print(sys.executable) |
|
|
|
|
|
from dataset_prep.config import INPUT_FOLDER, OUTPUT_FOLDER, YOLO_DETECTED_FOLDER, ASPECT_RATIOS, SAVE_TO_YOLO_DETECTED_FOLDER |
|
|
|
|
|
counter_lock = threading.Lock() |
|
model_lock = threading.Lock() |
|
|
|
def resize_bbox_to_dimensions(bbox, target_width, target_height, img_width, img_height): |
|
x1, y1, x2, y2 = bbox |
|
current_width = x2 - x1 |
|
current_height = y2 - y1 |
|
desired_aspect_ratio = target_width / target_height |
|
current_aspect_ratio = current_width / current_height |
|
|
|
print(f"Original bbox: {bbox}") |
|
print(f"Current aspect ratio: {current_aspect_ratio}") |
|
print(f"Desired aspect ratio: {desired_aspect_ratio}") |
|
|
|
if current_aspect_ratio < desired_aspect_ratio: |
|
new_width = desired_aspect_ratio * current_height |
|
x1 -= (new_width - current_width) / 2 |
|
x2 += (new_width - current_width) / 2 |
|
elif current_aspect_ratio > desired_aspect_ratio: |
|
new_height = current_width / desired_aspect_ratio |
|
y1 -= (new_height - current_height) / 2 |
|
y2 += (new_height - current_height) / 2 |
|
|
|
x1 = max(x1, 0) |
|
y1 = max(y1, 0) |
|
x2 = min(x2, img_width) |
|
y2 = min(y2, img_height) |
|
|
|
new_bbox = [int(x1), int(y1), int(x2), int(y2)] |
|
print(f"New bbox: {new_bbox}") |
|
|
|
return new_bbox |
|
|
|
def process_files(filelist): |
|
global image_processed_counter |
|
with counter_lock: |
|
model = torch.hub.load('WongKinYiu/yolov7', 'custom', 'yolov7-e6e.pt', force_reload=False, trust_repo=True) |
|
for filename in filelist: |
|
try: |
|
img_path = os.path.join(INPUT_FOLDER, filename) |
|
image = cv2.imread(img_path) |
|
if image is None: |
|
raise ValueError(f"Could not read image {filename}") |
|
img_width, img_height = image.shape[1], image.shape[0] |
|
|
|
with model_lock: |
|
results = model(img_path) |
|
detections = results.pandas().xyxy[0] |
|
|
|
person_detected = detections[detections['name'] == 'person'] |
|
print(f"Person detected: {not person_detected.empty}") |
|
if not person_detected.empty: |
|
x1, y1, x2, y2 = person_detected.iloc[0][['xmin', 'ymin', 'xmax', 'ymax']].astype(int) |
|
|
|
for target_width, target_height in ASPECT_RATIOS: |
|
new_x1, new_y1, new_x2, new_y2 = resize_bbox_to_dimensions([x1, y1, x2, y2], target_width, target_height, img_width, img_height) |
|
new_x1, new_y1 = max(new_x1, 0), max(new_y1, 0) |
|
new_x2, new_y2 = min(new_x2, img_width), min(new_y2, img_height) |
|
cropped_img = image[new_y1:new_y2, new_x1:new_x2] |
|
|
|
|
|
aspect_ratio_folder = f"{target_width}_{target_height}" |
|
aspect_ratio_path = os.path.join(OUTPUT_FOLDER, aspect_ratio_folder) |
|
os.makedirs(aspect_ratio_path, exist_ok=True) |
|
|
|
|
|
output_filename = os.path.join(aspect_ratio_path, f"cropped_{filename}") |
|
cv2.imwrite(output_filename, cropped_img) |
|
|
|
except Exception as e: |
|
print(f"An error occurred while processing file {filename}: {e}") |
|
|
|
if __name__ == "__main__": |
|
filelist = os.listdir(INPUT_FOLDER) |
|
process_files(filelist) |