|
|
|
|
|
""" |
|
@file : glyce_embedding.py |
|
@author: zijun |
|
@contact : [email protected] |
|
@date : 2020/8/23 10:40 |
|
@version: 1.0 |
|
@desc : 【char embedding】+【pinyin embedding】+【glyph embedding】 = fusion embedding |
|
""" |
|
import os |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from models.glyph_embedding import GlyphEmbedding |
|
from models.pinyin_embedding import PinyinEmbedding |
|
|
|
|
|
class FusionBertEmbeddings(nn.Module): |
|
""" |
|
Construct the embeddings from word, position, glyph, pinyin and token_type embeddings. |
|
""" |
|
|
|
def __init__(self, config): |
|
super(FusionBertEmbeddings, self).__init__() |
|
config_path = os.path.join(config.name_or_path, 'config') |
|
font_files = [] |
|
for file in os.listdir(config_path): |
|
if file.endswith(".npy"): |
|
font_files.append(os.path.join(config_path, file)) |
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0) |
|
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) |
|
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) |
|
self.pinyin_embeddings = PinyinEmbedding(embedding_size=128, pinyin_out_dim=config.hidden_size, |
|
config_path=config_path) |
|
self.glyph_embeddings = GlyphEmbedding(font_npy_files=font_files) |
|
|
|
|
|
|
|
self.glyph_map = nn.Linear(1728, config.hidden_size) |
|
self.map_fc = nn.Linear(config.hidden_size * 3, config.hidden_size) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
|
|
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) |
|
|
|
def forward(self, input_ids=None, pinyin_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): |
|
if input_ids is not None: |
|
input_shape = input_ids.size() |
|
else: |
|
input_shape = inputs_embeds.size()[:-1] |
|
|
|
seq_length = input_shape[1] |
|
|
|
if position_ids is None: |
|
position_ids = self.position_ids[:, :seq_length] |
|
|
|
if token_type_ids is None: |
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
|
|
|
|
word_embeddings = inputs_embeds |
|
pinyin_embeddings = self.pinyin_embeddings(pinyin_ids) |
|
glyph_embeddings = self.glyph_map(self.glyph_embeddings(input_ids)) |
|
|
|
concat_embeddings = torch.cat((word_embeddings, pinyin_embeddings, glyph_embeddings), 2) |
|
inputs_embeds = self.map_fc(concat_embeddings) |
|
|
|
position_embeddings = self.position_embeddings(position_ids) |
|
token_type_embeddings = self.token_type_embeddings(token_type_ids) |
|
|
|
embeddings = inputs_embeds + position_embeddings + token_type_embeddings |
|
embeddings = self.LayerNorm(embeddings) |
|
embeddings = self.dropout(embeddings) |
|
return embeddings |
|
|