ChineseBERT-base / models /fusion_embedding.py
iioSnail's picture
Upload 6 files
a2e10c0
raw
history blame
3.54 kB
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
@file : glyce_embedding.py
@author: zijun
@contact : [email protected]
@date : 2020/8/23 10:40
@version: 1.0
@desc : 【char embedding】+【pinyin embedding】+【glyph embedding】 = fusion embedding
"""
import os
import torch
from torch import nn
from models.glyph_embedding import GlyphEmbedding
from models.pinyin_embedding import PinyinEmbedding
class FusionBertEmbeddings(nn.Module):
"""
Construct the embeddings from word, position, glyph, pinyin and token_type embeddings.
"""
def __init__(self, config):
super(FusionBertEmbeddings, self).__init__()
config_path = os.path.join(config.name_or_path, 'config')
font_files = []
for file in os.listdir(config_path):
if file.endswith(".npy"):
font_files.append(os.path.join(config_path, file))
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
self.pinyin_embeddings = PinyinEmbedding(embedding_size=128, pinyin_out_dim=config.hidden_size,
config_path=config_path)
self.glyph_embeddings = GlyphEmbedding(font_npy_files=font_files)
# self.LayerNorm is not snake-cased to stick with TensorFlow models variable name and be able to load
# any TensorFlow checkpoint file
self.glyph_map = nn.Linear(1728, config.hidden_size)
self.map_fc = nn.Linear(config.hidden_size * 3, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
def forward(self, input_ids=None, pinyin_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
# get char embedding, pinyin embedding and glyph embedding
word_embeddings = inputs_embeds # [bs,l,hidden_size]
pinyin_embeddings = self.pinyin_embeddings(pinyin_ids) # [bs,l,hidden_size]
glyph_embeddings = self.glyph_map(self.glyph_embeddings(input_ids)) # [bs,l,hidden_size]
# fusion layer
concat_embeddings = torch.cat((word_embeddings, pinyin_embeddings, glyph_embeddings), 2)
inputs_embeds = self.map_fc(concat_embeddings)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + position_embeddings + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings