File size: 23,025 Bytes
ae509ea 2e14c11 ae509ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
import json
import os
import shutil
import time
from pathlib import Path
from typing import List
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from torch import nn
from torch.nn import functional as F
from transformers import BertPreTrainedModel, BertModel
from transformers.modeling_outputs import MaskedLMOutput, BaseModelOutputWithPooling
from transformers.models.bert.modeling_bert import BertEncoder, BertPooler, BertLMPredictionHead
cache_path = Path(os.path.abspath(__file__)).parent
def download_file(filename: str, path: Path):
if os.path.exists(cache_path / filename):
return
if os.path.exists(path / filename):
shutil.copyfile(path / filename, cache_path / filename)
return
hf_hub_download(
"iioSnail/ChineseBERT-for-csc",
filename,
local_dir=cache_path
)
time.sleep(0.2)
class ChineseBertForCSC(BertPreTrainedModel):
def __init__(self, config):
super(ChineseBertForCSC, self).__init__(config)
self.model = Dynamic_GlyceBertForMultiTask(config)
self.tokenizer = None
def forward(self, **kwargs):
return self.model(**kwargs)
def set_tokenizer(self, tokenizer):
self.tokenizer = tokenizer
def _predict(self, sentence):
if self.tokenizer is None:
return "Please init tokenizer by `set_tokenizer(tokenizer)` before predict."
inputs = self.tokenizer([sentence], return_tensors='pt')
output_hidden = self.model(**inputs).logits
return self.tokenizer.convert_ids_to_tokens(output_hidden.argmax(-1)[0, 1:-1])
def predict(self, sentence, window=1):
_src_tokens = list(sentence)
src_tokens = list(sentence)
pred_tokens = self._predict(sentence)
for _ in range(window):
record_index = []
for i, (a, b) in enumerate(zip(src_tokens, pred_tokens)):
if a != b:
record_index.append(i)
src_tokens = pred_tokens
pred_tokens = self._predict(''.join(pred_tokens))
for i, (a, b) in enumerate(zip(src_tokens, pred_tokens)):
# 若这个token被修改了,且在窗口范围内,则什么都不做。
if a != b and any([abs(i - x) <= 1 for x in record_index]):
pass
else:
pred_tokens[i] = src_tokens[i]
return ''.join(pred_tokens)
#################################ChineseBERT Source Code##############################################
class Dynamic_GlyceBertForMultiTask(BertPreTrainedModel):
def __init__(self, config):
super(Dynamic_GlyceBertForMultiTask, self).__init__(config)
self.bert = GlyceBertModel(config)
self.cls = MultiTaskHeads(config)
def get_output_embeddings(self):
return self.cls.predictions.decoder
def forward(
self,
input_ids=None,
pinyin_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
**kwargs
):
assert kwargs == {}, f"Unexpected keyword arguments: {list(kwargs.keys())}."
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs_x = self.bert(
input_ids,
pinyin_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
encoded_x = outputs_x[0]
prediction_scores = self.cls(encoded_x)
return MaskedLMOutput(
logits=prediction_scores,
hidden_states=outputs_x.hidden_states,
attentions=outputs_x.attentions,
)
class GlyceBertModel(BertModel):
r"""
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
Sequence of hidden-states at the output of the last layer of the models.
**pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)``
Last layer hidden-state of the first token of the sequence (classification token)
further processed by a Linear layer and a Tanh activation function. The Linear
layer weights are trained from the next sentence prediction (classification)
objective during Bert pretraining. This output is usually *not* a good summary
of the semantic content of the input, you're often better with averaging or pooling
the sequence of hidden-states for the whole input sequence.
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the models at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
models = BertModel.from_pretrained('bert-base-uncased')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
outputs = models(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
"""
def __init__(self, config):
super(GlyceBertModel, self).__init__(config)
self.config = config
self.embeddings = FusionBertEmbeddings(config)
self.encoder = BertEncoder(config)
self.pooler = BertPooler(config)
self.init_weights()
def forward(
self,
input_ids=None,
pinyin_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
if the models is configured as a decoder.
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask
is used in the cross-attention if the models is configured as a decoder.
Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids, pinyin_ids=pinyin_ids, position_ids=position_ids, token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def forward_with_embedding(
self,
input_ids=None,
pinyin_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
embedding=None
):
r"""
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
if the models is configured as a decoder.
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask
is used in the cross-attention if the models is configured as a decoder.
Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
assert embedding is not None
embedding_output = embedding
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class MultiTaskHeads(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = BertLMPredictionHead(config)
def forward(self, sequence_output):
prediction_scores = self.predictions(sequence_output)
return prediction_scores
class FusionBertEmbeddings(nn.Module):
"""
Construct the embeddings from word, position, glyph, pinyin and token_type embeddings.
"""
def __init__(self, config):
super(FusionBertEmbeddings, self).__init__()
self.path = Path(config._name_or_path)
config_path = cache_path / 'config'
if not os.path.exists(config_path):
os.makedirs(config_path)
font_files = []
download_file("config/STFANGSO.TTF24.npy", self.path)
download_file("config/STXINGKA.TTF24.npy", self.path)
download_file("config/方正古隶繁体.ttf24.npy", self.path)
for file in os.listdir(config_path):
if file.endswith(".npy"):
font_files.append(config_path / file)
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
self.pinyin_embeddings = PinyinEmbedding(embedding_size=128, pinyin_out_dim=config.hidden_size, config=config)
self.glyph_embeddings = GlyphEmbedding(font_npy_files=font_files)
# self.LayerNorm is not snake-cased to stick with TensorFlow models variable name and be able to load
# any TensorFlow checkpoint file
self.glyph_map = nn.Linear(1728, config.hidden_size)
self.map_fc = nn.Linear(config.hidden_size * 3, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
def forward(self, input_ids=None, pinyin_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
# get char embedding, pinyin embedding and glyph embedding
word_embeddings = inputs_embeds # [bs,l,hidden_size]
pinyin_embeddings = self.pinyin_embeddings(pinyin_ids) # [bs,l,hidden_size]
glyph_embeddings = self.glyph_map(self.glyph_embeddings(input_ids)) # [bs,l,hidden_size]
# fusion layer
concat_embeddings = torch.cat((word_embeddings, pinyin_embeddings, glyph_embeddings), 2)
inputs_embeds = self.map_fc(concat_embeddings)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + position_embeddings + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class PinyinEmbedding(nn.Module):
def __init__(self, embedding_size: int, pinyin_out_dim: int, config):
"""
Pinyin Embedding Module
Args:
embedding_size: the size of each embedding vector
pinyin_out_dim: kernel number of conv
"""
super(PinyinEmbedding, self).__init__()
download_file("config/pinyin_map.json", Path(config._name_or_path))
with open(cache_path / 'config' / 'pinyin_map.json') as fin:
pinyin_dict = json.load(fin)
self.pinyin_out_dim = pinyin_out_dim
self.embedding = nn.Embedding(len(pinyin_dict['idx2char']), embedding_size)
self.conv = nn.Conv1d(in_channels=embedding_size, out_channels=self.pinyin_out_dim, kernel_size=2,
stride=1, padding=0)
def forward(self, pinyin_ids):
"""
Args:
pinyin_ids: (bs*sentence_length*pinyin_locs)
Returns:
pinyin_embed: (bs,sentence_length,pinyin_out_dim)
"""
# input pinyin ids for 1-D conv
embed = self.embedding(pinyin_ids) # [bs,sentence_length,pinyin_locs,embed_size]
bs, sentence_length, pinyin_locs, embed_size = embed.shape
view_embed = embed.view(-1, pinyin_locs, embed_size) # [(bs*sentence_length),pinyin_locs,embed_size]
input_embed = view_embed.permute(0, 2, 1) # [(bs*sentence_length), embed_size, pinyin_locs]
# conv + max_pooling
pinyin_conv = self.conv(input_embed) # [(bs*sentence_length),pinyin_out_dim,H]
pinyin_embed = F.max_pool1d(pinyin_conv, pinyin_conv.shape[-1]) # [(bs*sentence_length),pinyin_out_dim,1]
return pinyin_embed.view(bs, sentence_length, self.pinyin_out_dim) # [bs,sentence_length,pinyin_out_dim]
class GlyphEmbedding(nn.Module):
"""Glyph2Image Embedding"""
def __init__(self, font_npy_files: List[str]):
super(GlyphEmbedding, self).__init__()
font_arrays = [
np.load(np_file).astype(np.float32) for np_file in font_npy_files
]
self.vocab_size = font_arrays[0].shape[0]
self.font_num = len(font_arrays)
self.font_size = font_arrays[0].shape[-1]
# N, C, H, W
font_array = np.stack(font_arrays, axis=1)
self.embedding = nn.Embedding(
num_embeddings=self.vocab_size,
embedding_dim=self.font_size ** 2 * self.font_num,
_weight=torch.from_numpy(font_array.reshape([self.vocab_size, -1]))
)
def forward(self, input_ids):
"""
get glyph images for batch inputs
Args:
input_ids: [batch, sentence_length]
Returns:
images: [batch, sentence_length, self.font_num*self.font_size*self.font_size]
"""
# return self.embedding(input_ids).view([-1, self.font_num, self.font_size, self.font_size])
return self.embedding(input_ids)
|