import json import os import shutil import time from pathlib import Path from typing import List, Union, Optional import tokenizers import torch from torch import NoneType from huggingface_hub import hf_hub_download from pypinyin import pinyin, Style from transformers.tokenization_utils_base import TruncationStrategy from transformers.utils import PaddingStrategy from transformers.utils.generic import TensorType try: from tokenizers import BertWordPieceTokenizer except: from tokenizers.implementations import BertWordPieceTokenizer from transformers import BertTokenizerFast, BatchEncoding cache_path = Path(os.path.abspath(__file__)).parent def download_file(filename: str, path: Path): if os.path.exists(cache_path / filename): return if os.path.exists(path / filename): shutil.copyfile(path / filename, cache_path / filename) return hf_hub_download( "iioSnail/ChineseBERT-for-csc", filename, local_dir=cache_path ) time.sleep(0.2) class ChineseBertTokenizer(BertTokenizerFast): def __init__(self, **kwargs): super(ChineseBertTokenizer, self).__init__(**kwargs) self.path = Path(kwargs['name_or_path']) vocab_file = cache_path / 'vocab.txt' config_path = cache_path / 'config' if not os.path.exists(config_path): os.makedirs(config_path) self.max_length = 512 download_file('vocab.txt', self.path) self.tokenizer = BertWordPieceTokenizer(str(vocab_file)) # load pinyin map dict download_file('config/pinyin_map.json', self.path) with open(config_path / 'pinyin_map.json', encoding='utf8') as fin: self.pinyin_dict = json.load(fin) # load char id map tensor download_file('config/id2pinyin.json', self.path) with open(config_path / 'id2pinyin.json', encoding='utf8') as fin: self.id2pinyin = json.load(fin) # load pinyin map tensor download_file('config/pinyin2tensor.json', self.path) with open(config_path / 'pinyin2tensor.json', encoding='utf8') as fin: self.pinyin2tensor = json.load(fin) def __call__(self, text: Union[str, List[str], List[List[str]]] = None, text_pair: Union[str, List[str], List[List[str]], NoneType] = None, text_target: Union[str, List[str], List[List[str]]] = None, text_pair_target: Union[str, List[str], List[List[str]], NoneType] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, is_split_into_words: bool = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Union[str, TensorType, NoneType] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs) -> BatchEncoding: encoding = super(ChineseBertTokenizer, self).__call__( text=text, text_pair=text_pair, text_target=text_target, text_pair_target=text_pair_target, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, is_split_into_words=is_split_into_words, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_offsets_mapping=True, return_length=return_length, verbose=verbose, ) input_ids = encoding.input_ids pinyin_ids = None if type(text) == str: offsets = encoding.offset_mapping[0].tolist() tokens = self.sentence_to_tokens(text, offsets) pinyin_ids = [self.convert_sentence_to_pinyin_ids(text, tokens, offsets)] if type(text) == list or type(text) == tuple: pinyin_ids = [] for i, sentence in enumerate(text): offsets = encoding.offset_mapping[i].tolist() tokens = self.sentence_to_tokens(sentence, offsets) pinyin_ids.append(self.convert_sentence_to_pinyin_ids(sentence, tokens, offsets)) if torch.is_tensor(encoding.input_ids): pinyin_ids = torch.LongTensor(pinyin_ids) encoding['pinyin_ids'] = pinyin_ids if not return_offsets_mapping: del encoding['offset_mapping'] return encoding def sentence_to_tokens(self, sentence, offsets): tokens = [] for start, end in offsets: tokens.append(sentence[start:end]) return tokens def convert_sentence_to_pinyin_ids(self, sentence: str, tokens, offsets): # get pinyin of a sentence pinyin_list = pinyin(sentence, style=Style.TONE3, heteronym=True, errors=lambda x: [['not chinese'] for _ in x]) pinyin_locs = {} # get pinyin of each location for index, item in enumerate(pinyin_list): pinyin_string = item[0] # not a Chinese character, pass if pinyin_string == "not chinese": continue if pinyin_string in self.pinyin2tensor: pinyin_locs[index] = self.pinyin2tensor[pinyin_string] else: ids = [0] * 8 for i, p in enumerate(pinyin_string): if p not in self.pinyin_dict["char2idx"]: ids = [0] * 8 break ids[i] = self.pinyin_dict["char2idx"][p] pinyin_locs[index] = ids # find chinese character location, and generate pinyin ids pinyin_ids = [] for idx, (token, offset) in enumerate(zip(tokens, offsets)): if offset[1] - offset[0] != 1: pinyin_ids.append([0] * 8) continue if offset[0] in pinyin_locs: pinyin_ids.append(pinyin_locs[offset[0]]) else: pinyin_ids.append([0] * 8) return pinyin_ids