--- license: afl-3.0 language: - zh tags: - Chinese Spell Correction - csc - Chinese Spell Checking --- # ReaLiSe-for-csc 中文拼写纠错(Chinese Spell Checking, CSC)模型 该模型源于ReaLiSe源码提供的模型 原论文为:https://arxiv.org/abs/2105.12306 原论文官方代码为:https://github.com/DaDaMrX/ReaLiSe 本模型在SIGHAN2015上的表现如下: | | Detect-Acc | Detect-Precision | Detect-Recall | Detect-F1 | Correct-Acc | Correct-Precision | Correct-Recall | Correct-F1 | |--|--|--|--|--|--|--|--|--| | Sentence-level | 84.7 | 77.3 | 81.3 | 79.3 | 84.0 | 75.9 | 79.9 | 77.8 | # 模型使用方法 [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/iioSnail/ReaLiSe/blob/master/ReaLiSe_for_csc_Demo.ipynb) 安装依赖: ``` !pip install transformers !pip install pypinyin !pip install boto3 ``` ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("iioSnail/ReaLiSe-for-csc", trust_remote_code=True) model = AutoModel.from_pretrained("iioSnail/ReaLiSe-for-csc", trust_remote_code=True) inputs = tokenizer(["我是炼习时长两念半的个人练习生蔡徐坤"], return_tensors='pt') output_hidden = model(**inputs).logits print(''.join(tokenizer.convert_ids_to_tokens(output_hidden.argmax(-1)[0, 1:-1]))) ``` 输出: ``` 我是练习时长两年半的个人练习生蔡徐坤 ``` 你也可以使用本模型封装的`predict`方法。 ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("iioSnail/ReaLiSe-for-csc", trust_remote_code=True) model = AutoModel.from_pretrained("iioSnail/ReaLiSe-for-csc", trust_remote_code=True) model.set_tokenizer(tokenizer) # 使用predict方法前,调用该方法 print(model.predict("我是练习时长两念半的鸽仁练习生蔡徐坤")) print(model.predict(["我是练习时长两念半的鸽仁练习生蔡徐坤", "喜换唱跳、rap 和 蓝球"])) ``` 输出: ``` 我是练习时长两年半的各仁练习生蔡徐坤 ['我是练习时长两年半的各仁练习生蔡徐坤', '喜欢唱跳、rap 和 蓝球'] ``` # 模型训练 ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("iioSnail/ReaLiSe-for-csc", trust_remote_code=True) model = AutoModel.from_pretrained("iioSnail/ReaLiSe-for-csc", trust_remote_code=True) inputs = tokenizer(["我是炼习时长两念半的个人练习生蔡徐坤", "喜换唱跳rap蓝球"], text_target=["我是练习时长两年半的个人练习生蔡徐坤", "喜欢唱跳rap篮球"], padding=True, return_tensors='pt') loss = model(**inputs).loss print("loss:", loss) loss.backward() ``` 输出: ``` loss: tensor(0.6515, grad_fn=) ``` # 常见问题 1. 网络问题,例如:`Connection Error` 解决方案:将模型下载到本地使用。批量下载方案可参考该[博客](https://blog.csdn.net/zhaohongfei_358/article/details/126222999) 2. 将模型下载到本地使用时出现报错:`ModuleNotFoundError: No module named 'transformers_modules.iioSnail/ReaLiSe-for-csc'` 解决方案:将 `iioSnail/ChineseBERT-for-csc` 改为 `iioSnail\ChineseBERT-for-csc`,或升级transformers