File size: 2,350 Bytes
1335d9b cc667e2 a6ece63 cc667e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
library_name: transformers
license: cc-by-4.0
base_model: paust/pko-t5-base
tags:
- generated_from_trainer
model-index:
- name: correction
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Basic Inference
```python
from transformers import T5TokenizerFast, T5ForConditionalGeneration
tokenizer = T5TokenizerFast.from_pretrained('ij5/whitespace-correction')
model = T5ForConditionalGeneration.from_pretrained('ij5/whitespace-correction')
def fix_whitespace(text):
inputs = f"๋์ด์ฐ๊ธฐ ๊ต์ : {text}"
tokenized = tokenizer(inputs, max_length=128, truncation=True, return_tensors='pt').to('cuda')
output_ids = model.generate(
input_ids=tokenized['input_ids'],
attention_mask=tokenized['attention_mask'],
max_length=128,
)
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(fix_whitespace("ํ๋ค ๋ฆฌ๋ ๊ฐ์ง ์ฌ์ด๋ก ๋ถ์ฅ ๋ฐ๋์ ํ์ ์ด ๋ ๋ฌ๋๊ธฐ๋ผ๋ ํ ๊ฒ์ฒ๋ผ."))
# result: ํ๋ค๋ฆฌ๋ ๊ฐ์ง ์ฌ์ด๋ก ๋ถ์ฅ ๋ฐ๋์ ํ์์ด ๋๋ฌ๋๊ธฐ๋ผ๋ ํ ๊ฒ์ฒ๋ผ.
```
# correction
This model is a fine-tuned version of [paust/pko-t5-base](https://huggingface.co/paust/pko-t5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0160
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.0243 | 1.0 | 1688 | 0.0183 |
| 0.0172 | 2.0 | 3376 | 0.0165 |
| 0.0126 | 3.0 | 5064 | 0.0160 |
### Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
|