Create handler.py
Browse files- handler.py +32 -0
handler.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.environ["CT2_USE_EXPERIMENTAL_PACKED_GEMM"] = "1"
|
3 |
+
import ctranslate2
|
4 |
+
from typing import Dict, List, Any
|
5 |
+
from transformers import T5TokenizerFast
|
6 |
+
from huggingface_hub import snapshot_download
|
7 |
+
from sentencepiece import SentencePieceProcessor
|
8 |
+
|
9 |
+
|
10 |
+
class EndpointHandler():
|
11 |
+
def __init__(self, path=""):
|
12 |
+
# load the optimized model
|
13 |
+
model_path = snapshot_download('ikeno-ada/madlad400-3b-mt-8bit-ct2')
|
14 |
+
self.translator = ctranslate2.Translator(model_path)
|
15 |
+
self.tokenizer = T5TokenizerFast.from_pretrained('google/madlad400-3b-mt')
|
16 |
+
|
17 |
+
def __call__(self, data: Any) -> Dict[str, str]:
|
18 |
+
"""
|
19 |
+
Args:
|
20 |
+
data (:obj:):
|
21 |
+
includes the input data and the parameters for the inference.
|
22 |
+
"""
|
23 |
+
text = data.get("inputs").get("text")
|
24 |
+
langId = data.get("inputs").get("langId")
|
25 |
+
|
26 |
+
input_text = f"<2{langId}>{text}"
|
27 |
+
input_tokens = tokenizer.convert_ids_to_tokens(tokenizer.encode(input_text))
|
28 |
+
results = translator.translate_batch([input_tokens],batch_type="tokens")
|
29 |
+
|
30 |
+
output_tokens = results[0].hypotheses[0]
|
31 |
+
output_text = tokenizer.decode(tokenizer.convert_tokens_to_ids(output_tokens))
|
32 |
+
return {"translated": output_text}
|