amindada commited on
Commit
77a04ac
·
1 Parent(s): eda3324

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +39 -2
README.md CHANGED
@@ -4,11 +4,23 @@
4
  {}
5
  ---
6
 
7
- # Model Card for Model ID
8
 
9
  <!-- Provide a quick summary of what the model is/does. -->
10
  GeBERTa is a set of German DeBERTa models developed in a joint effort between the University of Florida, NVIDIA, and IKIM.
11
- The models range in size from 122M to 750M parameters. The pre-training dataset consists of documents from different domains:
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
  | Domain | Dataset | Data Size | #Docs | #Tokens |
14
  | -------- | ----------- | --------- | ------ | ------- |
@@ -29,7 +41,32 @@ The models range in size from 122M to 750M parameters. The pre-training dataset
29
  | - | Total | 167GB | 116,079,769 | 35.8B |
30
 
31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
 
33
 
 
34
 
 
35
 
 
 
4
  {}
5
  ---
6
 
7
+ # GeBERTa
8
 
9
  <!-- Provide a quick summary of what the model is/does. -->
10
  GeBERTa is a set of German DeBERTa models developed in a joint effort between the University of Florida, NVIDIA, and IKIM.
11
+ The models range in size from 122M to 750M parameters.
12
+
13
+
14
+ ## Model details
15
+
16
+ The models follow the architecture of DeBERTa-v2 and make use of sentence piece tokenizers. The base and large models use a 50k token vocabulary,
17
+ while the large model uses a 128k token vocabulary. All models were trained with a batch size of 2k for a maximum of 1 million steps
18
+ and have a maximum sequence length of 512 tokens.
19
+
20
+
21
+ ## Dataset
22
+
23
+ The pre-training dataset consists of documents from different domains:
24
 
25
  | Domain | Dataset | Data Size | #Docs | #Tokens |
26
  | -------- | ----------- | --------- | ------ | ------- |
 
41
  | - | Total | 167GB | 116,079,769 | 35.8B |
42
 
43
 
44
+ ## Benchmark
45
+
46
+ In a comprehensive benchmark, we evaluated existing German models and our own. The benchmark included a variety of task types, such as question answering,
47
+ classification, and named entity recognition (NER). In addition, we introduced a new task focused on hate speech detection, using two existing datasets.
48
+ When the datasets provided training, development, and test sets, we used them accordingly.
49
+
50
+
51
+
52
+ We randomly split the data into 80% for training, 10% for validation, and 10% for test in cases where such sets were not available.
53
+ The following table presents the F1 scores:
54
+
55
+
56
+
57
+ | Model | [GE14](https://huggingface.co/datasets/germeval_14) | [GQuAD](https://huggingface.co/datasets/deepset/germanquad) | [GE18](https://huggingface.co/datasets/philschmid/germeval18) | TS | [GGP](https://github.com/JULIELab/GGPOnc) | GRAS<sup>1</sup> | [JS](https://github.com/JULIELab/jsyncc) | [DROC](https://gitlab2.informatik.uni-wuerzburg.de/kallimachos/DROC-Release) | Avg |
58
+ |:---------------------:|:--------:|:----------:|:--------:|:--------:|:-------:|:------:|:--------:|:------:|:------:|
59
+ | gbert-base | 87.10±0.12 | 72.19±0.82 | 51.27±1.4 | 72.34±0.48 | 78.17±0.25 | 62.90±0.01 | 77.18±3.34 | 88.03±0.20 | 73.65±0.50 |
60
+ | gelectra-base | 86.19±0.5 | 74.09±0.70 | 48.02±1.80 | 70.62±0.44 | 77.53±0.11 | 65.97±0.01 | 71.17±2.94 | 88.06±0.37 | 72.71±0.66 |
61
+ | gottbert | 87.15±0.19 | 72.76±0.378 | 51.12±1.20 | 74.25±0.80 | **78.18**±0.11 | 65.71±0.01 | 74.60±4.75 | 88.61±0.23 | 74.05±0.51 |
62
+ | geberta-base | **88.06**±0.22 | **78.54**±0.32 | **53.16**±1.39 | **74.83**±0.36 | 78.13±0.15 | **68.37**±1.11 | **81.85**±5.23 | **89.14**±0.32 | **76.51**±0.32 |
63
+
64
+ <sup>1</sup>Is not published yet but described in the [MedBERT.de paper](https://arxiv.org/abs/2303.08179).
65
 
66
+ ## Publication
67
 
68
+ The publication is following soon.
69
 
70
+ ## Contact
71
 
72