ikmalalfaozi commited on
Commit
1a4b93f
·
verified ·
1 Parent(s): b39f302

layoutlmv3-finetuned-cord_100

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ base_model: microsoft/layoutlmv3-base
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: layoutlmv3-finetuned-cord_100
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # layoutlmv3-finetuned-cord_100
20
+
21
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.1687
24
+ - Precision: 0.9382
25
+ - Recall: 0.9574
26
+ - F1: 0.9477
27
+ - Accuracy: 0.9597
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 1e-05
47
+ - train_batch_size: 5
48
+ - eval_batch_size: 5
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - training_steps: 2500
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | No log | 1.56 | 250 | 0.3730 | 0.8662 | 0.8708 | 0.8685 | 0.9042 |
59
+ | 0.3943 | 3.12 | 500 | 0.2683 | 0.8939 | 0.9027 | 0.8983 | 0.9279 |
60
+ | 0.3943 | 4.69 | 750 | 0.2232 | 0.9248 | 0.9339 | 0.9293 | 0.9474 |
61
+ | 0.1559 | 6.25 | 1000 | 0.2129 | 0.9301 | 0.9407 | 0.9354 | 0.9504 |
62
+ | 0.1559 | 7.81 | 1250 | 0.1782 | 0.9289 | 0.9529 | 0.9407 | 0.9563 |
63
+ | 0.082 | 9.38 | 1500 | 0.1876 | 0.9327 | 0.9483 | 0.9405 | 0.9555 |
64
+ | 0.082 | 10.94 | 1750 | 0.1746 | 0.9416 | 0.9559 | 0.9487 | 0.9606 |
65
+ | 0.0486 | 12.5 | 2000 | 0.1848 | 0.9349 | 0.9498 | 0.9423 | 0.9550 |
66
+ | 0.0486 | 14.06 | 2250 | 0.1739 | 0.9439 | 0.9590 | 0.9514 | 0.9623 |
67
+ | 0.0351 | 15.62 | 2500 | 0.1687 | 0.9382 | 0.9574 | 0.9477 | 0.9597 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.39.3
73
+ - Pytorch 2.1.2
74
+ - Datasets 2.18.0
75
+ - Tokenizers 0.15.2