ilanaliouchouche commited on
Commit
98f92d6
·
verified ·
1 Parent(s): b8c4c62

Upload NewForSequenceClassification

Browse files
Files changed (4) hide show
  1. config.json +61 -0
  2. configuration.py +145 -0
  3. model.safetensors +3 -0
  4. modeling.py +1384 -0
config.json ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "../training/transformers/weighted/gte-base-lazy-teacher-weighted",
3
+ "architectures": [
4
+ "NewForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration.NewConfig",
9
+ "AutoModel": "Alibaba-NLP/new-impl--modeling.NewModel",
10
+ "AutoModelForMaskedLM": "Alibaba-NLP/new-impl--modeling.NewForMaskedLM",
11
+ "AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
12
+ "AutoModelForQuestionAnswering": "Alibaba-NLP/new-impl--modeling.NewForQuestionAnswering",
13
+ "AutoModelForSequenceClassification": "modeling.NewForSequenceClassification",
14
+ "AutoModelForTokenClassification": "Alibaba-NLP/new-impl--modeling.NewForTokenClassification"
15
+ },
16
+ "classifier_dropout": null,
17
+ "hidden_act": "gelu",
18
+ "hidden_dropout_prob": 0.1,
19
+ "hidden_size": 768,
20
+ "id2label": {
21
+ "0": "LABEL_0",
22
+ "1": "LABEL_1",
23
+ "2": "LABEL_2",
24
+ "3": "LABEL_3",
25
+ "4": "LABEL_4",
26
+ "5": "LABEL_5"
27
+ },
28
+ "initializer_range": 0.02,
29
+ "intermediate_size": 3072,
30
+ "label2id": {
31
+ "LABEL_0": 0,
32
+ "LABEL_1": 1,
33
+ "LABEL_2": 2,
34
+ "LABEL_3": 3,
35
+ "LABEL_4": 4,
36
+ "LABEL_5": 5
37
+ },
38
+ "layer_norm_eps": 1e-12,
39
+ "layer_norm_type": "layer_norm",
40
+ "logn_attention_clip1": false,
41
+ "logn_attention_scale": false,
42
+ "max_position_embeddings": 8192,
43
+ "model_type": "new",
44
+ "num_attention_heads": 12,
45
+ "num_hidden_layers": 12,
46
+ "pack_qkv": true,
47
+ "pad_token_id": 0,
48
+ "position_embedding_type": "rope",
49
+ "problem_type": "single_label_classification",
50
+ "rope_scaling": {
51
+ "factor": 2.0,
52
+ "type": "ntk"
53
+ },
54
+ "rope_theta": 500000,
55
+ "torch_dtype": "float32",
56
+ "transformers_version": "4.40.1",
57
+ "type_vocab_size": 0,
58
+ "unpad_inputs": false,
59
+ "use_memory_efficient_attention": false,
60
+ "vocab_size": 30528
61
+ }
configuration.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The GTE Team Authors and Alibaba Group.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ NEW model configuration"""
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.utils import logging
19
+
20
+ logger = logging.get_logger(__name__)
21
+
22
+
23
+ class NewConfig(PretrainedConfig):
24
+ r"""
25
+ This is the configuration class to store the configuration of a [`NewModel`] or a [`TFNewModel`]. It is used to
26
+ instantiate a NEW model according to the specified arguments, defining the model architecture. Instantiating a
27
+ configuration with the defaults will yield a similar configuration to that of the NEW
28
+ [izhx/new-base-en](https://huggingface.co/izhx/new-base-en) architecture.
29
+
30
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
31
+ documentation from [`PretrainedConfig`] for more information.
32
+
33
+
34
+ Args:
35
+ vocab_size (`int`, *optional*, defaults to 30522):
36
+ Vocabulary size of the NEW model. Defines the number of different tokens that can be represented by the
37
+ `inputs_ids` passed when calling [`NewModel`] or [`TFNewModel`].
38
+ hidden_size (`int`, *optional*, defaults to 768):
39
+ Dimensionality of the encoder layers and the pooler layer.
40
+ num_hidden_layers (`int`, *optional*, defaults to 12):
41
+ Number of hidden layers in the Transformer encoder.
42
+ num_attention_heads (`int`, *optional*, defaults to 12):
43
+ Number of attention heads for each attention layer in the Transformer encoder.
44
+ intermediate_size (`int`, *optional*, defaults to 3072):
45
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
46
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
47
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
48
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
49
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
50
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
51
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
52
+ The dropout ratio for the attention probabilities.
53
+ max_position_embeddings (`int`, *optional*, defaults to 512):
54
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
55
+ just in case (e.g., 512 or 1024 or 2048).
56
+ type_vocab_size (`int`, *optional*, defaults to 2):
57
+ The vocabulary size of the `token_type_ids` passed when calling [`NewModel`] or [`TFNewModel`].
58
+ initializer_range (`float`, *optional*, defaults to 0.02):
59
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
60
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
61
+ The epsilon used by the layer normalization layers.
62
+ position_embedding_type (`str`, *optional*, defaults to `"rope"`):
63
+ Type of position embedding. Choose one of `"absolute"`, `"rope"`.
64
+ rope_theta (`float`, *optional*, defaults to 10000.0):
65
+ The base period of the RoPE embeddings.
66
+ rope_scaling (`Dict`, *optional*):
67
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
68
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
69
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
70
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
71
+ these scaling strategies behave:
72
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
73
+ experimental feature, subject to breaking API changes in future versions.
74
+ classifier_dropout (`float`, *optional*):
75
+ The dropout ratio for the classification head.
76
+
77
+ Examples:
78
+
79
+ ```python
80
+ >>> from transformers import NewConfig, NewModel
81
+
82
+ >>> # Initializing a NEW izhx/new-base-en style configuration
83
+ >>> configuration = NewConfig()
84
+
85
+ >>> # Initializing a model (with random weights) from the izhx/new-base-en style configuration
86
+ >>> model = NewModel(configuration)
87
+
88
+ >>> # Accessing the model configuration
89
+ >>> configuration = model.config
90
+ ```"""
91
+
92
+ model_type = "new"
93
+
94
+ def __init__(
95
+ self,
96
+ vocab_size=30528,
97
+ hidden_size=768,
98
+ num_hidden_layers=12,
99
+ num_attention_heads=12,
100
+ intermediate_size=3072,
101
+ hidden_act="gelu",
102
+ hidden_dropout_prob=0.1,
103
+ attention_probs_dropout_prob=0.0,
104
+ max_position_embeddings=2048,
105
+ type_vocab_size=1,
106
+ initializer_range=0.02,
107
+ layer_norm_type='layer_norm',
108
+ layer_norm_eps=1e-12,
109
+ # pad_token_id=0,
110
+ position_embedding_type="rope",
111
+ rope_theta=10000.0,
112
+ rope_scaling=None,
113
+ classifier_dropout=None,
114
+ pack_qkv=True,
115
+ unpad_inputs=False,
116
+ use_memory_efficient_attention=False,
117
+ logn_attention_scale=False,
118
+ logn_attention_clip1=False,
119
+ **kwargs,
120
+ ):
121
+ super().__init__(**kwargs)
122
+
123
+ self.vocab_size = vocab_size
124
+ self.hidden_size = hidden_size
125
+ self.num_hidden_layers = num_hidden_layers
126
+ self.num_attention_heads = num_attention_heads
127
+ self.hidden_act = hidden_act
128
+ self.intermediate_size = intermediate_size
129
+ self.hidden_dropout_prob = hidden_dropout_prob
130
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
131
+ self.max_position_embeddings = max_position_embeddings
132
+ self.type_vocab_size = type_vocab_size
133
+ self.initializer_range = initializer_range
134
+ self.layer_norm_type = layer_norm_type
135
+ self.layer_norm_eps = layer_norm_eps
136
+ self.position_embedding_type = position_embedding_type
137
+ self.rope_theta = rope_theta
138
+ self.rope_scaling = rope_scaling
139
+ self.classifier_dropout = classifier_dropout
140
+
141
+ self.pack_qkv = pack_qkv
142
+ self.unpad_inputs = unpad_inputs
143
+ self.use_memory_efficient_attention = use_memory_efficient_attention
144
+ self.logn_attention_scale = logn_attention_scale
145
+ self.logn_attention_clip1 = logn_attention_clip1
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:485dc19e4a035e4880035cb3c4f66c159d614be0083ae560ef9496bdcc0e95e1
3
+ size 549500832
modeling.py ADDED
@@ -0,0 +1,1384 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The GTE Team Authors and Alibaba Group.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """PyTorch NEW model."""
17
+
18
+ import math
19
+ from typing import List, Optional, Tuple, Union
20
+
21
+ import torch
22
+ import torch.utils.checkpoint
23
+ from torch import nn
24
+
25
+ from transformers.activations import ACT2FN
26
+ from transformers.modeling_outputs import (
27
+ BaseModelOutput,
28
+ BaseModelOutputWithPooling,
29
+ MaskedLMOutput,
30
+ MultipleChoiceModelOutput,
31
+ QuestionAnsweringModelOutput,
32
+ SequenceClassifierOutput,
33
+ TokenClassifierOutput,
34
+ )
35
+ from transformers.modeling_utils import PreTrainedModel
36
+ from transformers.utils import logging
37
+
38
+ try:
39
+ import xformers.ops as xops
40
+ except ImportError as e:
41
+ xops = None
42
+
43
+ from .configuration import NewConfig
44
+
45
+
46
+ logger = logging.get_logger(__name__)
47
+
48
+
49
+ # Adapted from https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/bert_padding.py
50
+ # Which was adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/padding.py
51
+ class IndexFirstAxis(torch.autograd.Function):
52
+ @staticmethod
53
+ def forward(ctx, input, indices):
54
+ ctx.save_for_backward(indices)
55
+ assert input.ndim >= 2
56
+ ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:]
57
+ second_dim = other_shape.numel()
58
+ # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
59
+ # return input[indices]
60
+ # return torch.gather(
61
+ # rearrange(input, "b ... -> b (...)"), 0, repeat(indices, "z -> z d", d=second_dim)
62
+ # ).reshape(-1, *other_shape)
63
+ return torch.gather(
64
+ input.view(ctx.first_axis_dim, second_dim),
65
+ 0,
66
+ indices.unsqueeze(-1).expand(indices.size(0), second_dim)
67
+ ).reshape(-1, *other_shape)
68
+
69
+ @staticmethod
70
+ def backward(ctx, grad_output):
71
+ (indices,) = ctx.saved_tensors
72
+ assert grad_output.ndim >= 2
73
+ other_shape = grad_output.shape[1:]
74
+ # grad_output = rearrange(grad_output, "b ... -> b (...)")
75
+ grad_output = grad_output.view(grad_output.size(0), other_shape.numel())
76
+ grad_input = torch.zeros(
77
+ [ctx.first_axis_dim, grad_output.shape[1]],
78
+ device=grad_output.device,
79
+ dtype=grad_output.dtype,
80
+ )
81
+ # TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing.
82
+ # grad_input[indices] = grad_output
83
+ # grad_input.scatter_(0, repeat(indices, "z -> z d", d=grad_output.shape[1]), grad_output)
84
+ grad_input.scatter_(
85
+ 0, indices.unsqueeze(-1).expand(indices.size(0), grad_output.size(1)), grad_output
86
+ )
87
+ return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
88
+
89
+
90
+ index_first_axis = IndexFirstAxis.apply
91
+
92
+
93
+ def unpad_input(hidden_states, attention_mask=None, indices=None):
94
+ """
95
+ Arguments:
96
+ hidden_states: (batch, seqlen, ...)
97
+ attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
98
+ indices: (total_nnz), the indices of non-masked tokens from the flattened input sequence.
99
+ Return:
100
+ hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
101
+ """
102
+ if indices is None:
103
+ assert attention_mask is not None
104
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
105
+
106
+ # TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
107
+ # bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
108
+ # times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
109
+ # index with integer indices. Moreover, torch's index is a bit slower than it needs to be,
110
+ # so we write custom forward and backward to make it a bit faster.
111
+ hidden_states = hidden_states.view(-1, *hidden_states.shape[2:])
112
+ return index_first_axis(hidden_states, indices)
113
+
114
+
115
+ class IndexPutFirstAxis(torch.autograd.Function):
116
+ @staticmethod
117
+ def forward(
118
+ ctx,
119
+ values: torch.Tensor,
120
+ indices: torch.Tensor,
121
+ first_axis_dim
122
+ ) -> torch.Tensor:
123
+ ctx.save_for_backward(indices)
124
+ assert indices.ndim == 1
125
+ assert values.ndim >= 2
126
+ output = torch.zeros(
127
+ first_axis_dim, *values.shape[1:], device=values.device, dtype=values.dtype
128
+ )
129
+ output[indices] = values
130
+ return output
131
+
132
+ @staticmethod
133
+ def backward(ctx, grad_output: torch.Tensor) -> Tuple[torch.Tensor, None, None]:
134
+ indices, = ctx.saved_tensors
135
+ grad_values = grad_output[indices]
136
+ return grad_values, None, None
137
+
138
+
139
+ index_put_first_axis = IndexPutFirstAxis.apply
140
+
141
+
142
+ def pad_input(inputs: torch.Tensor, indices: torch.Tensor, batch: int, seqlen: int) -> torch.Tensor:
143
+ """Add padding to sequences.
144
+
145
+ Arguments:
146
+ inputs: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
147
+ indices: (total_nnz), `indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()`
148
+ batch: int batch_size
149
+ seqlen: int max sequence length
150
+
151
+ Returns:
152
+ inputs: (batch, seqlen, ...)
153
+ """
154
+ output = index_put_first_axis(inputs, indices, batch * seqlen)
155
+ return output.view(batch, seqlen, *inputs.shape[1:])
156
+
157
+
158
+ def rotate_half(x):
159
+ """Rotates half the hidden dims of the input."""
160
+ x1 = x[..., : x.shape[-1] // 2]
161
+ x2 = x[..., x.shape[-1] // 2 :]
162
+ return torch.cat((-x2, x1), dim=-1)
163
+
164
+
165
+ def apply_rotary_pos_emb(q, k, cos, sin):
166
+ """Applies Rotary Position Embedding to the query and key tensors.
167
+
168
+ Args:
169
+ q (`torch.Tensor`): The query tensor.
170
+ k (`torch.Tensor`): The key tensor.
171
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
172
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
173
+ Returns:
174
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
175
+ """
176
+ cos, sin = cos.to(q.dtype), sin.to(q.dtype)
177
+ q_embed = (q * cos) + (rotate_half(q) * sin)
178
+ k_embed = (k * cos) + (rotate_half(k) * sin)
179
+ return q_embed, k_embed
180
+
181
+
182
+ class RotaryEmbedding(torch.nn.Module):
183
+ def __init__(self, dim, max_position_embeddings=512, base=10000.0, device=None):
184
+ super().__init__()
185
+
186
+ self.dim = dim
187
+ self.max_position_embeddings = max_position_embeddings
188
+ self.base = base
189
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
190
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
191
+
192
+ # Build here to make `torch.jit.trace` work.
193
+ self._set_cos_sin_cache(
194
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
195
+ )
196
+
197
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
198
+ self.max_seq_len_cached = seq_len
199
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
200
+
201
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
202
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
203
+ emb = torch.cat((freqs, freqs), dim=-1)
204
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
205
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
206
+
207
+ def forward(self, x, seq_len=None):
208
+ # x: [bs, num_attention_heads, seq_len, head_size]
209
+ if seq_len > self.max_seq_len_cached:
210
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
211
+
212
+ return (
213
+ self.cos_cached[:seq_len, ...].to(dtype=x.dtype),
214
+ self.sin_cached[:seq_len, ...].to(dtype=x.dtype),
215
+ )
216
+
217
+
218
+ class NTKScalingRotaryEmbedding(RotaryEmbedding):
219
+ """RotaryEmbedding extended with fixed and mixed NTK scaling. https://kexue.fm/archives/9706 """
220
+
221
+ def __init__(self, dim, max_position_embeddings=512, base=10000, device=None, scaling_factor=1.0, mixed_b=None):
222
+ self.scaling_factor = scaling_factor
223
+ self.mixed_b = mixed_b
224
+ super().__init__(dim, max_position_embeddings, base, device)
225
+ max_position_embeddings = max_position_embeddings * self.scaling_factor
226
+ self._set_cos_sin_cache(max_position_embeddings, self.inv_freq.device, torch.get_default_dtype())
227
+
228
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
229
+ self.max_seq_len_cached = seq_len
230
+
231
+ if seq_len > self.max_position_embeddings:
232
+ base = self.base * (self.scaling_factor if self.mixed_b is None else 1)
233
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
234
+
235
+ if self.mixed_b is None:
236
+ inv_freq = inv_freq / self.scaling_factor ** (2 / self.dim) # (6)
237
+ else:
238
+ a = torch.tensor(self.scaling_factor).log() / (self.dim / 2) ** self.mixed_b # (13)
239
+ lambda_1_m = (a * torch.arange(1, self.dim // 2 + 1).float().to(device) ** self.mixed_b).exp() # (12)
240
+ inv_freq = inv_freq / lambda_1_m # (10)
241
+
242
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
243
+
244
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
245
+
246
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
247
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
248
+ emb = torch.cat((freqs, freqs), dim=-1)
249
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
250
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
251
+
252
+
253
+ class RMSNorm(nn.Module):
254
+ def __init__(self, hidden_size, eps=1e-6):
255
+ """
256
+ RMSNorm is equivalent to T5LayerNorm
257
+ """
258
+ super().__init__()
259
+ self.weight = nn.Parameter(torch.ones(hidden_size))
260
+ self.variance_epsilon = eps
261
+
262
+ def forward(self, hidden_states):
263
+ input_dtype = hidden_states.dtype
264
+ hidden_states = hidden_states.to(torch.float32)
265
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
266
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
267
+ return self.weight * hidden_states.to(input_dtype)
268
+
269
+
270
+ LAYER_NORM = {
271
+ 'layer_norm': nn.LayerNorm,
272
+ 'rms_norm': RMSNorm
273
+ }
274
+
275
+
276
+ class NewEmbeddings(nn.Module):
277
+ """
278
+ Embedding and Unpadding.
279
+ """
280
+
281
+ def __init__(self, config: NewConfig):
282
+ super().__init__()
283
+ self.padding_idx = config.pad_token_id
284
+ self.word_embeddings = nn.Embedding(
285
+ config.vocab_size, config.hidden_size, padding_idx=self.padding_idx
286
+ )
287
+
288
+ self.position_embedding_type = config.position_embedding_type
289
+ if self.position_embedding_type == 'absolute':
290
+ self.position_embeddings = nn.Embedding(
291
+ config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
292
+ )
293
+ elif self.position_embedding_type == 'rope':
294
+ self._init_rope(config)
295
+ else:
296
+ raise ValueError
297
+
298
+ self.type_vocab_size = config.type_vocab_size
299
+ if self.type_vocab_size > 0:
300
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
301
+
302
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
303
+ # any TensorFlow checkpoint file
304
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
305
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
306
+ # position_ids is contiguous in memory and excluded when serialized
307
+ self.register_buffer(
308
+ "position_ids", torch.arange(config.max_position_embeddings), persistent=False
309
+ )
310
+
311
+ def _init_rope(self, config):
312
+ kwargs = dict(
313
+ dim=int(config.hidden_size / config.num_attention_heads),
314
+ max_position_embeddings=config.max_position_embeddings,
315
+ base=config.rope_theta
316
+ )
317
+ if config.rope_scaling is None:
318
+ self.rotary_emb = RotaryEmbedding(**kwargs)
319
+ else:
320
+ kwargs.update(scaling_factor=config.rope_scaling["factor"])
321
+ scaling_type = config.rope_scaling["type"]
322
+ if scaling_type == 'ntk':
323
+ kwargs.update(mixed_b=config.rope_scaling.get('mixed_b', None))
324
+ self.rotary_emb = NTKScalingRotaryEmbedding(**kwargs)
325
+ # elif scaling_type == "linear":
326
+ # self.rotary_emb = LinearScalingRotaryEmbedding(**kwargs)
327
+ # elif scaling_type == "dynamic":
328
+ # self.rotary_emb = DynamicNTKScalingRotaryEmbedding(**kwargs)
329
+ else:
330
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
331
+
332
+ def forward(
333
+ self,
334
+ unpad_inputs: bool,
335
+ input_ids: Optional[torch.Tensor] = None,
336
+ attention_mask: Optional[torch.Tensor] = None,
337
+ length: Optional[List[int]] = None,
338
+ token_type_ids: Optional[torch.Tensor] = None,
339
+ position_ids: Optional[torch.Tensor] = None,
340
+ inputs_embeds: Optional[torch.Tensor] = None,
341
+ ) -> Tuple[torch.Tensor, torch.Tensor, Optional[Tuple], Optional[List[int]]]:
342
+ """
343
+ """
344
+ if inputs_embeds is None:
345
+ device, input_shape = input_ids.device, input_ids.shape
346
+ else:
347
+ device, input_shape = inputs_embeds.device, inputs_embeds.shape[:2]
348
+ batch_size, seq_length = input_shape
349
+
350
+ # Set attention_mask if it's None
351
+ if attention_mask is None:
352
+ attention_mask = torch.ones(input_shape, device=device)
353
+ if length is not None:
354
+ for i, l in enumerate(length):
355
+ attention_mask[i, l:] = 0
356
+
357
+ # Set attention_mask_bool for unpadding
358
+ if unpad_inputs:
359
+ attention_mask_bool = attention_mask.bool()
360
+ if length is None:
361
+ length = attention_mask.sum(-1).tolist()
362
+
363
+ # Get word embeddings
364
+ if inputs_embeds is None:
365
+ if unpad_inputs:
366
+ input_ids = input_ids[attention_mask_bool].unsqueeze(0)
367
+ inputs_embeds = self.word_embeddings(input_ids)
368
+ else:
369
+ if unpad_inputs:
370
+ inputs_embeds = inputs_embeds[attention_mask_bool].unsqueeze(0)
371
+ embeddings = inputs_embeds
372
+
373
+ # Set and unpad position_ids
374
+ if position_ids is None:
375
+ if seq_length > self.position_ids.size(0):
376
+ self.register_buffer(
377
+ "position_ids", torch.arange(seq_length), persistent=False
378
+ )
379
+ if unpad_inputs:
380
+ # [1, cumsum_seq_len]
381
+ position_ids = torch.cat([self.position_ids[:l] for l in length]).unsqueeze(0)
382
+ else:
383
+ # [bs, seq_len]
384
+ position_ids = self.position_ids[:seq_length].expand(batch_size, -1)
385
+ elif unpad_inputs:
386
+ position_ids = position_ids[attention_mask_bool].unsqueeze(0) # [1, cumsum_seq_len]
387
+
388
+ # Compute rotary embedding
389
+ if self.position_embedding_type == 'rope':
390
+ rope_cos, rope_sin = self.rotary_emb(inputs_embeds, seq_len=seq_length)
391
+ rope_cos = rope_cos[position_ids].unsqueeze(2) # [bs, seq_len, 1, dim]
392
+ rope_sin = rope_sin[position_ids].unsqueeze(2) # [bs, seq_len, 1, dim]
393
+ rope_embeds = rope_cos, rope_sin
394
+ else:
395
+ rope_embeds = None
396
+
397
+ if self.type_vocab_size > 0:
398
+ if token_type_ids is None:
399
+ token_type_ids = position_ids.mul(0)
400
+ elif unpad_inputs:
401
+ token_type_ids = token_type_ids[attention_mask_bool].unsqueeze(0)
402
+
403
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
404
+ embeddings += token_type_embeddings
405
+
406
+ # BERT position
407
+ if self.position_embedding_type == "absolute":
408
+ position_embeddings = self.position_embeddings(position_ids)
409
+ embeddings += position_embeddings
410
+
411
+ embeddings = self.LayerNorm(embeddings)
412
+ embeddings = self.dropout(embeddings)
413
+
414
+ return embeddings, attention_mask, rope_embeds, length
415
+
416
+
417
+ class NewAttention(nn.Module):
418
+ def __init__(self, config: NewConfig, pack_qkv=None, use_memory_efficient_attention=None):
419
+ super().__init__()
420
+ self.config = config
421
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
422
+ raise ValueError(
423
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
424
+ f"heads ({config.num_attention_heads})"
425
+ )
426
+
427
+ self.hidden_size = config.hidden_size
428
+ self.num_attention_heads = config.num_attention_heads
429
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
430
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
431
+
432
+ if pack_qkv is None:
433
+ pack_qkv = config.pack_qkv
434
+ self.pack_qkv = pack_qkv
435
+
436
+ if self.pack_qkv:
437
+ self.qkv_proj = nn.Linear(config.hidden_size, self.all_head_size * 3, bias=True)
438
+ else:
439
+ self.q_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
440
+ self.k_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
441
+ self.v_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
442
+
443
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
444
+ self.o_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
445
+
446
+ if use_memory_efficient_attention is None:
447
+ use_memory_efficient_attention = self.config.use_memory_efficient_attention
448
+ self.use_memory_efficient_attention = use_memory_efficient_attention
449
+ self.memory_efficient_attention = None if xops is None else xops.memory_efficient_attention
450
+ if self.use_memory_efficient_attention:
451
+ assert self.memory_efficient_attention is not None, 'please install xformers'
452
+ if self.config.unpad_inputs:
453
+ assert self.config.use_memory_efficient_attention, 'unpad only with xformers'
454
+
455
+ def forward(
456
+ self,
457
+ hidden_states: torch.Tensor,
458
+ attention_bias: torch.FloatTensor,
459
+ rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
460
+ attention_scale: Optional[torch.FloatTensor] = None,
461
+ head_mask: Optional[torch.FloatTensor] = None,
462
+ output_attentions: Optional[bool] = False,
463
+ qkv_inputs: Optional[Tuple] = None, # For RetroMAE
464
+ padding_inputs: Optional[Tuple] = None, # indices, batch, seqlen
465
+ ) -> Tuple[torch.Tensor, ...]:
466
+ shape_hd = (self.num_attention_heads, self.attention_head_size)
467
+ # qkv
468
+ if self.pack_qkv and qkv_inputs is None:
469
+ qkv_pack = self.qkv_proj(hidden_states).split(self.all_head_size, dim=-1)
470
+ else:
471
+ if qkv_inputs is None:
472
+ qkv_inputs = (hidden_states, hidden_states, hidden_states)
473
+ qkv_pack = [
474
+ getattr(self, n + '_proj')(s) for s, n in zip(qkv_inputs, 'qkv')
475
+ ]
476
+ query_states, key_states, value_states = [t.view(t.shape[:-1] + shape_hd) for t in qkv_pack]
477
+
478
+ if self.config.position_embedding_type == 'rope':
479
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, *rope_embeds)
480
+
481
+ dtype = query_states.dtype
482
+
483
+ if self.config.logn_attention_scale and attention_scale is not None:
484
+ # https://kexue.fm/archives/8823
485
+ query_states = query_states * attention_scale.to(dtype)
486
+
487
+ if padding_inputs is not None:
488
+ query_states = pad_input(query_states.squeeze(), *padding_inputs)
489
+ key_states = pad_input(key_states.squeeze(), *padding_inputs)
490
+ value_states = pad_input(value_states.squeeze(), *padding_inputs)
491
+
492
+ if self.use_memory_efficient_attention:
493
+ assert self.memory_efficient_attention is not None, "xformers is not loaded"
494
+ assert output_attentions is False, "memory_efficient_attention do not output attentions"
495
+ assert head_mask is None, "Not support yet"
496
+ attention_probs = None
497
+ if torch.is_tensor(attention_bias):
498
+ attention_bias = attention_bias.to(dtype)
499
+ context_layer = self.memory_efficient_attention(
500
+ query_states,
501
+ key_states,
502
+ value_states,
503
+ attn_bias=attention_bias,
504
+ p=self.dropout.p
505
+ )
506
+ else:
507
+ context_layer = self._attention(query_states, key_states, value_states, attention_bias, head_mask)
508
+
509
+ if padding_inputs is not None:
510
+ context_layer = unpad_input(context_layer, indices=padding_inputs[0])
511
+
512
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
513
+ context_layer = context_layer.view(new_context_layer_shape)
514
+
515
+ # output proj
516
+ attn_output = self.o_proj(context_layer)
517
+
518
+ # add attentions if we output them
519
+ outputs = (attn_output, attention_probs) if output_attentions else (attn_output,)
520
+ return outputs
521
+
522
+ def _attention(self, query_states, key_states, value_states, attention_bias, head_mask):
523
+ """
524
+ Args:
525
+ q/k/v: (B, L, n_head, head_dim),
526
+ Returns:
527
+ attn_output: (B L, n_head, head_dim)
528
+ """
529
+ query_states = query_states.transpose(1, 2)
530
+ key_states = key_states.transpose(1, 2)
531
+ value_states = value_states.transpose(1, 2)
532
+ # Take the dot product between "query" and "key" to get the raw attention scores.
533
+ attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
534
+
535
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
536
+ if attention_bias is not None:
537
+ # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
538
+ attention_scores = attention_scores + attention_bias
539
+
540
+ # Normalize the attention scores to probabilities.
541
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
542
+
543
+ # This is actually dropping out entire tokens to attend to, which might
544
+ # seem a bit unusual, but is taken from the original Transformer paper.
545
+ attention_probs = self.dropout(attention_probs)
546
+
547
+ # Mask heads if we want to
548
+ if head_mask is not None:
549
+ attention_probs = attention_probs * head_mask
550
+
551
+ context_layer = torch.matmul(attention_probs, value_states)
552
+
553
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
554
+ return context_layer
555
+
556
+
557
+ class NewSdpaAttention(NewAttention):
558
+ """
559
+ New attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
560
+ `NewAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
561
+ SDPA API.
562
+ """
563
+ def __init__(self, config: NewConfig, **kwargs):
564
+ super().__init__(config, **kwargs)
565
+ torch.backends.cuda.enable_mem_efficient_sdp(False)
566
+ logger.warning(
567
+ "Disable memory efficient attention kernel for `NewSdpaAttention`, you can set "
568
+ "`use_memory_efficient_attention=True` if it expected to use."
569
+ )
570
+
571
+ def _attention(self, query_states, key_states, value_states, attention_bias, head_mask):
572
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
573
+ query_states.transpose(1, 2),
574
+ key_states.transpose(1, 2),
575
+ value_states.transpose(1, 2),
576
+ attn_mask=attention_bias,
577
+ dropout_p=self.dropout.p if self.training else 0.0,
578
+ )
579
+ attn_output = attn_output.permute(0, 2, 1, 3).contiguous()
580
+ return attn_output
581
+
582
+
583
+ NEW_ATTENTION_CLASSES = {
584
+ "eager": NewAttention,
585
+ # "flash_attention_2": , # TODO: xformers will dispatch to flash_attn
586
+ "sdpa": NewSdpaAttention,
587
+ }
588
+
589
+
590
+ class NewGatedMLP(nn.Module):
591
+ """
592
+ GLU Variants Improve Transformer.
593
+ """
594
+
595
+ def __init__(self, config: NewConfig):
596
+ super().__init__()
597
+ self.intermediate_size = config.intermediate_size
598
+ self.up_gate_proj = nn.Linear(config.hidden_size, self.intermediate_size * 2, bias=False)
599
+ self.down_proj = nn.Linear(self.intermediate_size, config.hidden_size, bias=True)
600
+ self.act_fn = ACT2FN[config.hidden_act]
601
+ if config.hidden_dropout_prob > 0:
602
+ self.hidden_dropout = nn.Dropout(config.hidden_dropout_prob)
603
+ else:
604
+ self.hidden_dropout = None
605
+
606
+ def forward(self, hidden_states):
607
+ up_gate = self.up_gate_proj(hidden_states)
608
+ up_states, gate = torch.split(up_gate, self.intermediate_size, dim=-1)
609
+ gate = self.act_fn(gate)
610
+ gated_states = gate * up_states
611
+ if self.hidden_dropout is not None:
612
+ gated_states = self.hidden_dropout(gated_states)
613
+ down_states = self.down_proj(gated_states)
614
+ return down_states
615
+
616
+
617
+ class NewLayer(nn.Module):
618
+ def __init__(
619
+ self,
620
+ config: NewConfig,
621
+ pack_qkv=None,
622
+ use_memory_efficient_attention=None,
623
+ attn_implementation=None
624
+ ):
625
+ super().__init__()
626
+ if attn_implementation is None:
627
+ attn_implementation = config._attn_implementation
628
+ if attn_implementation != 'eager':
629
+ use_memory_efficient_attention = False
630
+ self.attention = NEW_ATTENTION_CLASSES[attn_implementation](
631
+ config, pack_qkv=pack_qkv, use_memory_efficient_attention=use_memory_efficient_attention
632
+ )
633
+ self.mlp = NewGatedMLP(config)
634
+
635
+ ln_class = LAYER_NORM[config.layer_norm_type]
636
+ self.attn_ln = ln_class(config.hidden_size, eps=config.layer_norm_eps)
637
+ self.mlp_ln = ln_class(config.hidden_size, eps=config.layer_norm_eps)
638
+
639
+ if config.hidden_dropout_prob > 0:
640
+ self.hidden_dropout = nn.Dropout(config.hidden_dropout_prob)
641
+ else:
642
+ self.hidden_dropout = None
643
+
644
+ def forward(
645
+ self,
646
+ hidden_states: torch.Tensor,
647
+ attention_bias: torch.FloatTensor,
648
+ rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
649
+ attention_scale: Optional[torch.FloatTensor] = None,
650
+ subset_indices: Optional[torch.LongTensor] = None,
651
+ head_mask: Optional[torch.FloatTensor] = None,
652
+ output_attentions: Optional[bool] = False,
653
+ qkv_inputs: Optional[Tuple] = None, # For RetroMAE
654
+ padding_inputs: Optional[Tuple] = None,
655
+ ) -> Tuple[torch.Tensor, ...]:
656
+ # Multi head self attention
657
+ residual = hidden_states if qkv_inputs is None else qkv_inputs[0]
658
+ attention_outputs = self.attention(
659
+ hidden_states,
660
+ attention_bias,
661
+ rope_embeds,
662
+ attention_scale,
663
+ head_mask,
664
+ output_attentions=output_attentions,
665
+ qkv_inputs=qkv_inputs,
666
+ padding_inputs=padding_inputs,
667
+ )
668
+ hidden_states = attention_outputs[0]
669
+ if self.hidden_dropout is not None:
670
+ hidden_states = self.hidden_dropout(hidden_states)
671
+ hidden_states = residual + hidden_states
672
+
673
+ # In pretraining, after the attention of last layer, we only need the masked tokens.
674
+ if subset_indices is not None:
675
+ hidden_states = hidden_states[subset_indices]
676
+
677
+ hidden_states = self.attn_ln(hidden_states)
678
+
679
+ # Fully Connected
680
+ residual = hidden_states
681
+ hidden_states = self.mlp(hidden_states)
682
+ if self.hidden_dropout is not None:
683
+ hidden_states = self.hidden_dropout(hidden_states)
684
+ hidden_states = residual + hidden_states
685
+ hidden_states = self.mlp_ln(hidden_states)
686
+
687
+ # add self attentions if we output attention weights
688
+ outputs = (hidden_states,) + attention_outputs[1:]
689
+ return outputs
690
+
691
+
692
+ class NewEncoder(nn.Module):
693
+ def __init__(self, config):
694
+ super().__init__()
695
+ self.config = config
696
+ self.layer = nn.ModuleList([NewLayer(config) for _ in range(config.num_hidden_layers)])
697
+ self.gradient_checkpointing = False
698
+
699
+ def forward(
700
+ self,
701
+ hidden_states: torch.Tensor,
702
+ attention_bias: Optional[torch.FloatTensor] = None,
703
+ rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
704
+ attention_scale: Optional[torch.FloatTensor] = None,
705
+ subset_indices: Optional[torch.LongTensor] = None,
706
+ head_mask: Optional[torch.FloatTensor] = None,
707
+ output_attentions: Optional[bool] = False,
708
+ output_hidden_states: Optional[bool] = False,
709
+ return_dict: Optional[bool] = True,
710
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
711
+ all_hidden_states = () if output_hidden_states else None
712
+ all_self_attentions = () if output_attentions else None
713
+
714
+ for i, layer_module in enumerate(self.layer):
715
+ if output_hidden_states:
716
+ all_hidden_states = all_hidden_states + (hidden_states,)
717
+
718
+ if i >= len(self.layer) - 1:
719
+ layer_subset_indices = subset_indices
720
+ else:
721
+ layer_subset_indices = None
722
+
723
+ layer_head_mask = head_mask[i] if head_mask is not None else None
724
+
725
+ if self.gradient_checkpointing and self.training:
726
+ layer_outputs = self._gradient_checkpointing_func(
727
+ layer_module.__call__,
728
+ hidden_states,
729
+ attention_bias,
730
+ rope_embeds,
731
+ attention_scale,
732
+ layer_subset_indices,
733
+ layer_head_mask,
734
+ )
735
+ else:
736
+ layer_outputs = layer_module(
737
+ hidden_states,
738
+ attention_bias,
739
+ rope_embeds,
740
+ attention_scale,
741
+ layer_subset_indices,
742
+ layer_head_mask,
743
+ output_attentions,
744
+ )
745
+
746
+ hidden_states = layer_outputs[0]
747
+ if output_attentions:
748
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
749
+
750
+ if output_hidden_states:
751
+ all_hidden_states = all_hidden_states + (hidden_states,)
752
+
753
+ if not return_dict:
754
+ return tuple(
755
+ v
756
+ for v in [
757
+ hidden_states,
758
+ all_hidden_states,
759
+ all_self_attentions,
760
+ ]
761
+ if v is not None
762
+ )
763
+ return BaseModelOutput(
764
+ last_hidden_state=hidden_states,
765
+ hidden_states=all_hidden_states,
766
+ attentions=all_self_attentions,
767
+ )
768
+
769
+
770
+ # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->New
771
+ class NewPooler(nn.Module):
772
+ def __init__(self, config):
773
+ super().__init__()
774
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
775
+ self.activation = nn.Tanh()
776
+
777
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
778
+ # We "pool" the model by simply taking the hidden state corresponding
779
+ # to the first token.
780
+ first_token_tensor = hidden_states[:, 0]
781
+ pooled_output = self.dense(first_token_tensor)
782
+ pooled_output = self.activation(pooled_output)
783
+ return pooled_output
784
+
785
+
786
+ class NewPreTrainedModel(PreTrainedModel):
787
+ """
788
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
789
+ models.
790
+ """
791
+
792
+ config_class = NewConfig
793
+ base_model_prefix = "new"
794
+ supports_gradient_checkpointing = True
795
+
796
+ def _init_weights(self, module):
797
+ """Initialize the weights"""
798
+ if isinstance(module, nn.Linear):
799
+ # Slightly different from the TF version which uses truncated_normal for initialization
800
+ # cf https://github.com/pytorch/pytorch/pull/5617
801
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
802
+ if module.bias is not None:
803
+ module.bias.data.zero_()
804
+ elif isinstance(module, nn.Embedding):
805
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
806
+ if module.padding_idx is not None:
807
+ module.weight.data[module.padding_idx].zero_()
808
+ elif isinstance(module, nn.LayerNorm):
809
+ module.bias.data.zero_()
810
+ module.weight.data.fill_(1.0)
811
+
812
+
813
+ class NewModel(NewPreTrainedModel):
814
+ """
815
+ The bare New Model transformer outputting raw hidden-states without any specific head on top.
816
+ """
817
+
818
+ def __init__(self, config: NewConfig, add_pooling_layer=False):
819
+ super().__init__(config)
820
+ self.config = config
821
+
822
+ self.embeddings = NewEmbeddings(config)
823
+ self.encoder = NewEncoder(config)
824
+
825
+ self.pooler = NewPooler(config) if add_pooling_layer else None
826
+
827
+ # Initialize weights and apply final processing
828
+ self.post_init()
829
+
830
+ def get_input_embeddings(self):
831
+ return self.embeddings.word_embeddings
832
+
833
+ def set_input_embeddings(self, value):
834
+ self.embeddings.word_embeddings = value
835
+
836
+ def forward(
837
+ self,
838
+ input_ids: Optional[torch.Tensor] = None,
839
+ attention_mask: Optional[torch.Tensor] = None,
840
+ length: Optional[List[int]] = None,
841
+ subset_indices: Optional[torch.LongTensor] = None,
842
+ token_type_ids: Optional[torch.Tensor] = None,
843
+ position_ids: Optional[torch.Tensor] = None,
844
+ head_mask: Optional[torch.Tensor] = None,
845
+ inputs_embeds: Optional[torch.Tensor] = None,
846
+ output_attentions: Optional[bool] = None,
847
+ output_hidden_states: Optional[bool] = None,
848
+ return_dict: Optional[bool] = None,
849
+ unpad_inputs: Optional[bool] = None,
850
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]:
851
+ r"""
852
+ length (`list` of length `batch_size`, *optional*):
853
+ If is `None`, return padded `last_hidden_state`.
854
+ subset_indices ():
855
+ pass
856
+ unpad_inputs (`bool`, *optional*):
857
+ pass
858
+ """
859
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
860
+ output_hidden_states = (
861
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
862
+ )
863
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
864
+ unpad_inputs = unpad_inputs if unpad_inputs is not None else self.config.unpad_inputs
865
+ output_padded = length is None
866
+
867
+ if input_ids is not None and inputs_embeds is not None:
868
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
869
+ elif input_ids is not None:
870
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
871
+ input_shape = input_ids.size()
872
+ elif inputs_embeds is not None:
873
+ input_shape = inputs_embeds.size()[:-1]
874
+ else:
875
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
876
+
877
+ # TODO: not used
878
+ # # Prepare head mask if needed
879
+ # # 1.0 in head_mask indicate we keep the head
880
+ # # attention_probs has shape bsz x n_heads x N x N
881
+ # # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
882
+ # # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
883
+ # head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
884
+
885
+ # Get embeddings, may unpad them
886
+ (embedding_output, attention_mask, rope_embeds, length) = self.embeddings(
887
+ unpad_inputs,
888
+ input_ids=input_ids,
889
+ attention_mask=attention_mask,
890
+ length=length,
891
+ token_type_ids=token_type_ids,
892
+ position_ids=position_ids,
893
+ inputs_embeds=inputs_embeds
894
+ )
895
+
896
+ batch_size, seq_length = input_shape
897
+
898
+ if unpad_inputs:
899
+ assert self.config.use_memory_efficient_attention
900
+ attention_bias = xops.fmha.attn_bias.BlockDiagonalMask.from_seqlens(length)
901
+ else:
902
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
903
+ # ourselves in which case we just need to make it broadcastable to all heads.
904
+ attention_bias = self.get_extended_attention_mask(attention_mask, input_shape)
905
+ if self.config.use_memory_efficient_attention:
906
+ # Invalid shape for attention bias: torch.Size([48, 1, 1, 512]) (expected (48, 12, 512, 512))
907
+ attention_bias = attention_bias.expand(-1, self.config.num_attention_heads, seq_length, -1)
908
+
909
+ if self.config.logn_attention_scale:
910
+ # attention scale log_512(input_len)
911
+ attention_scale = attention_mask.sum(1).log() / torch.tensor(self.config.max_position_embeddings).log()
912
+ # inference-time logn scale need clip 1
913
+ if self.config.logn_attention_clip1:
914
+ attention_scale.clip_(1)
915
+ attention_scale = attention_scale[:, None, None, None]
916
+ else:
917
+ attention_scale = None
918
+
919
+ encoder_outputs = self.encoder(
920
+ embedding_output,
921
+ attention_bias=attention_bias,
922
+ rope_embeds=rope_embeds,
923
+ attention_scale=attention_scale,
924
+ subset_indices=subset_indices,
925
+ head_mask=head_mask,
926
+ output_attentions=output_attentions,
927
+ output_hidden_states=output_hidden_states,
928
+ return_dict=return_dict,
929
+ )
930
+ sequence_output = encoder_outputs[0]
931
+ if unpad_inputs and output_padded:
932
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
933
+ sequence_output = pad_input(
934
+ sequence_output.squeeze(), indices, batch_size, seq_length
935
+ )
936
+
937
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
938
+
939
+ if not return_dict:
940
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
941
+
942
+ return BaseModelOutputWithPooling(
943
+ last_hidden_state=sequence_output,
944
+ pooler_output=pooled_output,
945
+ hidden_states=encoder_outputs.hidden_states,
946
+ attentions=encoder_outputs.attentions,
947
+ )
948
+
949
+
950
+ class NewLMPredictionHead(nn.Module):
951
+ def __init__(self, config):
952
+ super().__init__()
953
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
954
+ self.transform_act_fn = ACT2FN[config.hidden_act]
955
+ self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
956
+
957
+ # The output weights are the same as the input embeddings, but there is
958
+ # an output-only bias for each token.
959
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
960
+
961
+ def forward(self, hidden_states):
962
+ hidden_states = self.dense(hidden_states)
963
+ hidden_states = self.transform_act_fn(hidden_states)
964
+ hidden_states = self.norm(hidden_states)
965
+ hidden_states = self.decoder(hidden_states)
966
+ return hidden_states
967
+
968
+
969
+ class NewForMaskedLM(NewPreTrainedModel):
970
+ _tied_weights_keys = ["lm_head.decoder.bias", "lm_head.decoder.weight"]
971
+
972
+ def __init__(self, config: NewConfig):
973
+ super().__init__(config)
974
+ self.new = NewModel(config, add_pooling_layer=False)
975
+ self.lm_head = NewLMPredictionHead(config)
976
+ self.loss_fct = nn.CrossEntropyLoss()
977
+
978
+ self.pretraining = True
979
+
980
+ # Initialize weights and apply final processing
981
+ self.post_init()
982
+
983
+ def get_output_embeddings(self):
984
+ return self.lm_head.decoder
985
+
986
+ def set_output_embeddings(self, new_embeddings):
987
+ self.lm_head.decoder = new_embeddings
988
+
989
+ def forward(
990
+ self,
991
+ input_ids: Optional[torch.Tensor] = None,
992
+ attention_mask: Optional[torch.Tensor] = None,
993
+ token_type_ids: Optional[torch.Tensor] = None,
994
+ position_ids: Optional[torch.Tensor] = None,
995
+ head_mask: Optional[torch.Tensor] = None,
996
+ inputs_embeds: Optional[torch.Tensor] = None,
997
+ labels: Optional[torch.Tensor] = None,
998
+ output_attentions: Optional[bool] = None,
999
+ output_hidden_states: Optional[bool] = None,
1000
+ return_dict: Optional[bool] = None,
1001
+ unpad_inputs: Optional[bool] = None,
1002
+ ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
1003
+ r"""
1004
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1005
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
1006
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
1007
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
1008
+ """
1009
+
1010
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1011
+
1012
+ if labels is None:
1013
+ length = None
1014
+ subset_indices = None
1015
+ else:
1016
+ length = attention_mask.sum(-1).tolist()
1017
+ labels = labels[attention_mask.bool()].unsqueeze(0)
1018
+ subset_indices = labels > -100 if self.pretraining else None
1019
+
1020
+ outputs = self.new(
1021
+ input_ids,
1022
+ attention_mask=attention_mask,
1023
+ length=length,
1024
+ subset_indices=subset_indices,
1025
+ token_type_ids=token_type_ids,
1026
+ position_ids=position_ids,
1027
+ head_mask=head_mask,
1028
+ inputs_embeds=inputs_embeds,
1029
+ output_attentions=output_attentions,
1030
+ output_hidden_states=output_hidden_states,
1031
+ return_dict=return_dict,
1032
+ unpad_inputs=unpad_inputs,
1033
+ )
1034
+
1035
+ sequence_output = outputs[0]
1036
+ prediction_scores = self.lm_head(sequence_output)
1037
+
1038
+ masked_lm_loss = None
1039
+ if labels is not None:
1040
+ labels = labels[subset_indices]
1041
+ masked_lm_loss = self.loss_fct(prediction_scores, labels)
1042
+
1043
+ if not return_dict:
1044
+ output = (prediction_scores,) + outputs[2:]
1045
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
1046
+
1047
+ return MaskedLMOutput(
1048
+ loss=masked_lm_loss,
1049
+ logits=prediction_scores,
1050
+ hidden_states=outputs.hidden_states,
1051
+ attentions=outputs.attentions,
1052
+ )
1053
+
1054
+
1055
+ class NewForSequenceClassification(NewPreTrainedModel):
1056
+ def __init__(self, config):
1057
+ super().__init__(config)
1058
+ self.num_labels = config.num_labels
1059
+ self.config = config
1060
+
1061
+ self.new = NewModel(config, add_pooling_layer=True)
1062
+ classifier_dropout = (
1063
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
1064
+ )
1065
+ self.dropout = nn.Dropout(classifier_dropout)
1066
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1067
+
1068
+ # Initialize weights and apply final processing
1069
+ self.post_init()
1070
+
1071
+ def forward(
1072
+ self,
1073
+ input_ids: Optional[torch.Tensor] = None,
1074
+ attention_mask: Optional[torch.Tensor] = None,
1075
+ token_type_ids: Optional[torch.Tensor] = None,
1076
+ position_ids: Optional[torch.Tensor] = None,
1077
+ head_mask: Optional[torch.Tensor] = None,
1078
+ inputs_embeds: Optional[torch.Tensor] = None,
1079
+ labels: Optional[torch.Tensor] = None,
1080
+ output_attentions: Optional[bool] = None,
1081
+ output_hidden_states: Optional[bool] = None,
1082
+ return_dict: Optional[bool] = None,
1083
+ unpad_inputs: Optional[bool] = None,
1084
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
1085
+ r"""
1086
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1087
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1088
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1089
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1090
+ """
1091
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1092
+
1093
+ outputs = self.new(
1094
+ input_ids,
1095
+ attention_mask=attention_mask,
1096
+ token_type_ids=token_type_ids,
1097
+ position_ids=position_ids,
1098
+ head_mask=head_mask,
1099
+ inputs_embeds=inputs_embeds,
1100
+ output_attentions=output_attentions,
1101
+ output_hidden_states=output_hidden_states,
1102
+ return_dict=return_dict,
1103
+ unpad_inputs=unpad_inputs,
1104
+ )
1105
+
1106
+ pooled_output = outputs[1]
1107
+
1108
+ pooled_output = self.dropout(pooled_output)
1109
+ logits = self.classifier(pooled_output)
1110
+
1111
+ loss = None
1112
+ if labels is not None:
1113
+ if self.config.problem_type is None:
1114
+ if self.num_labels == 1:
1115
+ self.config.problem_type = "regression"
1116
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1117
+ self.config.problem_type = "single_label_classification"
1118
+ else:
1119
+ self.config.problem_type = "multi_label_classification"
1120
+
1121
+ if self.config.problem_type == "regression":
1122
+ loss_fct = nn.MSELoss()
1123
+ if self.num_labels == 1:
1124
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
1125
+ else:
1126
+ loss = loss_fct(logits, labels)
1127
+ elif self.config.problem_type == "single_label_classification":
1128
+ loss_fct = nn.CrossEntropyLoss()
1129
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1130
+ elif self.config.problem_type == "multi_label_classification":
1131
+ loss_fct = nn.BCEWithLogitsLoss()
1132
+ loss = loss_fct(logits, labels)
1133
+
1134
+ if not return_dict:
1135
+ output = (logits,) + outputs[2:]
1136
+ return ((loss,) + output) if loss is not None else output
1137
+
1138
+ return SequenceClassifierOutput(
1139
+ loss=loss,
1140
+ logits=logits,
1141
+ hidden_states=outputs.hidden_states,
1142
+ attentions=outputs.attentions,
1143
+ )
1144
+
1145
+
1146
+ class NewForMultipleChoice(NewPreTrainedModel):
1147
+ def __init__(self, config):
1148
+ super().__init__(config)
1149
+
1150
+ self.new = NewModel(config, add_pooling_layer=True)
1151
+ classifier_dropout = (
1152
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
1153
+ )
1154
+ self.dropout = nn.Dropout(classifier_dropout)
1155
+ self.classifier = nn.Linear(config.hidden_size, 1)
1156
+
1157
+ # Initialize weights and apply final processing
1158
+ self.post_init()
1159
+
1160
+ def forward(
1161
+ self,
1162
+ input_ids: Optional[torch.Tensor] = None,
1163
+ attention_mask: Optional[torch.Tensor] = None,
1164
+ token_type_ids: Optional[torch.Tensor] = None,
1165
+ position_ids: Optional[torch.Tensor] = None,
1166
+ head_mask: Optional[torch.Tensor] = None,
1167
+ inputs_embeds: Optional[torch.Tensor] = None,
1168
+ labels: Optional[torch.Tensor] = None,
1169
+ output_attentions: Optional[bool] = None,
1170
+ output_hidden_states: Optional[bool] = None,
1171
+ return_dict: Optional[bool] = None,
1172
+ unpad_inputs: Optional[bool] = None,
1173
+ ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
1174
+ r"""
1175
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1176
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
1177
+ num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
1178
+ `input_ids` above)
1179
+ """
1180
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1181
+ num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
1182
+
1183
+ input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
1184
+ attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
1185
+ token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
1186
+ position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
1187
+ inputs_embeds = (
1188
+ inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
1189
+ if inputs_embeds is not None
1190
+ else None
1191
+ )
1192
+
1193
+ outputs = self.new(
1194
+ input_ids,
1195
+ attention_mask=attention_mask,
1196
+ token_type_ids=token_type_ids,
1197
+ position_ids=position_ids,
1198
+ head_mask=head_mask,
1199
+ inputs_embeds=inputs_embeds,
1200
+ output_attentions=output_attentions,
1201
+ output_hidden_states=output_hidden_states,
1202
+ return_dict=return_dict,
1203
+ unpad_inputs=unpad_inputs,
1204
+ )
1205
+
1206
+ pooled_output = outputs[1]
1207
+
1208
+ pooled_output = self.dropout(pooled_output)
1209
+ logits = self.classifier(pooled_output)
1210
+ reshaped_logits = logits.view(-1, num_choices)
1211
+
1212
+ loss = None
1213
+ if labels is not None:
1214
+ loss_fct = nn.CrossEntropyLoss()
1215
+ loss = loss_fct(reshaped_logits, labels)
1216
+
1217
+ if not return_dict:
1218
+ output = (reshaped_logits,) + outputs[2:]
1219
+ return ((loss,) + output) if loss is not None else output
1220
+
1221
+ return MultipleChoiceModelOutput(
1222
+ loss=loss,
1223
+ logits=reshaped_logits,
1224
+ hidden_states=outputs.hidden_states,
1225
+ attentions=outputs.attentions,
1226
+ )
1227
+
1228
+
1229
+ class NewForTokenClassification(NewPreTrainedModel):
1230
+ def __init__(self, config):
1231
+ super().__init__(config)
1232
+ self.num_labels = config.num_labels
1233
+
1234
+ self.new = NewModel(config, add_pooling_layer=False)
1235
+ classifier_dropout = (
1236
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
1237
+ )
1238
+ self.dropout = nn.Dropout(classifier_dropout)
1239
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1240
+
1241
+ # Initialize weights and apply final processing
1242
+ self.post_init()
1243
+
1244
+ def forward(
1245
+ self,
1246
+ input_ids: Optional[torch.Tensor] = None,
1247
+ attention_mask: Optional[torch.Tensor] = None,
1248
+ token_type_ids: Optional[torch.Tensor] = None,
1249
+ position_ids: Optional[torch.Tensor] = None,
1250
+ head_mask: Optional[torch.Tensor] = None,
1251
+ inputs_embeds: Optional[torch.Tensor] = None,
1252
+ labels: Optional[torch.Tensor] = None,
1253
+ output_attentions: Optional[bool] = None,
1254
+ output_hidden_states: Optional[bool] = None,
1255
+ return_dict: Optional[bool] = None,
1256
+ unpad_inputs: Optional[bool] = None,
1257
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
1258
+ r"""
1259
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1260
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
1261
+ """
1262
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1263
+
1264
+ outputs = self.new(
1265
+ input_ids,
1266
+ attention_mask=attention_mask,
1267
+ token_type_ids=token_type_ids,
1268
+ position_ids=position_ids,
1269
+ head_mask=head_mask,
1270
+ inputs_embeds=inputs_embeds,
1271
+ output_attentions=output_attentions,
1272
+ output_hidden_states=output_hidden_states,
1273
+ return_dict=return_dict,
1274
+ unpad_inputs=unpad_inputs,
1275
+ )
1276
+
1277
+ sequence_output = outputs[0]
1278
+
1279
+ sequence_output = self.dropout(sequence_output)
1280
+ logits = self.classifier(sequence_output)
1281
+
1282
+ loss = None
1283
+ if labels is not None:
1284
+ loss_fct = nn.CrossEntropyLoss()
1285
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1286
+
1287
+ if not return_dict:
1288
+ output = (logits,) + outputs[2:]
1289
+ return ((loss,) + output) if loss is not None else output
1290
+
1291
+ return TokenClassifierOutput(
1292
+ loss=loss,
1293
+ logits=logits,
1294
+ hidden_states=outputs.hidden_states,
1295
+ attentions=outputs.attentions,
1296
+ )
1297
+
1298
+
1299
+ class NewForQuestionAnswering(NewPreTrainedModel):
1300
+ def __init__(self, config):
1301
+ super().__init__(config)
1302
+ self.num_labels = config.num_labels
1303
+
1304
+ self.new = NewModel(config, add_pooling_layer=False)
1305
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
1306
+
1307
+ # Initialize weights and apply final processing
1308
+ self.post_init()
1309
+
1310
+ def forward(
1311
+ self,
1312
+ input_ids: Optional[torch.Tensor] = None,
1313
+ attention_mask: Optional[torch.Tensor] = None,
1314
+ token_type_ids: Optional[torch.Tensor] = None,
1315
+ position_ids: Optional[torch.Tensor] = None,
1316
+ head_mask: Optional[torch.Tensor] = None,
1317
+ inputs_embeds: Optional[torch.Tensor] = None,
1318
+ start_positions: Optional[torch.Tensor] = None,
1319
+ end_positions: Optional[torch.Tensor] = None,
1320
+ output_attentions: Optional[bool] = None,
1321
+ output_hidden_states: Optional[bool] = None,
1322
+ return_dict: Optional[bool] = None,
1323
+ unpad_inputs: Optional[bool] = None,
1324
+ ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
1325
+ r"""
1326
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1327
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1328
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1329
+ are not taken into account for computing the loss.
1330
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1331
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1332
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1333
+ are not taken into account for computing the loss.
1334
+ """
1335
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1336
+
1337
+ outputs = self.new(
1338
+ input_ids,
1339
+ attention_mask=attention_mask,
1340
+ token_type_ids=token_type_ids,
1341
+ position_ids=position_ids,
1342
+ head_mask=head_mask,
1343
+ inputs_embeds=inputs_embeds,
1344
+ output_attentions=output_attentions,
1345
+ output_hidden_states=output_hidden_states,
1346
+ return_dict=return_dict,
1347
+ unpad_inputs=unpad_inputs,
1348
+ )
1349
+
1350
+ sequence_output = outputs[0]
1351
+
1352
+ logits = self.qa_outputs(sequence_output)
1353
+ start_logits, end_logits = logits.split(1, dim=-1)
1354
+ start_logits = start_logits.squeeze(-1).contiguous()
1355
+ end_logits = end_logits.squeeze(-1).contiguous()
1356
+
1357
+ total_loss = None
1358
+ if start_positions is not None and end_positions is not None:
1359
+ # If we are on multi-GPU, split add a dimension
1360
+ if len(start_positions.size()) > 1:
1361
+ start_positions = start_positions.squeeze(-1)
1362
+ if len(end_positions.size()) > 1:
1363
+ end_positions = end_positions.squeeze(-1)
1364
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1365
+ ignored_index = start_logits.size(1)
1366
+ start_positions = start_positions.clamp(0, ignored_index)
1367
+ end_positions = end_positions.clamp(0, ignored_index)
1368
+
1369
+ loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
1370
+ start_loss = loss_fct(start_logits, start_positions)
1371
+ end_loss = loss_fct(end_logits, end_positions)
1372
+ total_loss = (start_loss + end_loss) / 2
1373
+
1374
+ if not return_dict:
1375
+ output = (start_logits, end_logits) + outputs[2:]
1376
+ return ((total_loss,) + output) if total_loss is not None else output
1377
+
1378
+ return QuestionAnsweringModelOutput(
1379
+ loss=total_loss,
1380
+ start_logits=start_logits,
1381
+ end_logits=end_logits,
1382
+ hidden_states=outputs.hidden_states,
1383
+ attentions=outputs.attentions,
1384
+ )