File size: 1,451 Bytes
7f4ffee eed2ee9 96ed2e0 eed2ee9 5b9beb8 eed2ee9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
---
language:
- ro
license: mit # Example: apache-2.0 or any license from https://hf.co/docs/hub/repositories-licenses
tags:
- romanian
- text generation
- causal lm
- gpt-neo
---
# GPT-Neo Romanian 125M
This model is a GPT-Neo transformer decoder model designed using EleutherAI's replication of the GPT-3 architecture.
It was trained on a thoroughly cleaned corpus of Romanian text of about 40GB composed of Oscar, Opus, Wikipedia, literature and various other bits and pieces of text, joined together and deduplicated. It was trained for about a month, totaling 5.8M steps on a v3 TPU machine.
```python
from transformers import GPTNeoForCausalLM, GPT2Tokenizer
model = GPTNeoForCausalLM.from_pretrained("iliemihai/gpt-neo-romanian-125m")
tokenizer = GPT2Tokenizer.from_pretrained("iliemihai/gpt-neo-romanian-125m")
prompt = "Cine a fost mihai eminescu"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
output = model.generate(input_ids, penalty_alpha=0.6, top_k=4, max_length=64)
result = tokenizer.decode(output[0], skip_special_tokens=True)
print(result)
```
### Authors:
* Dumitrescu Stefan
* Mihai Ilie
### Evaluation
Evaluation to be added soon, also on [https://github.com/dumitrescustefan/Romanian-Transformers](https://github.com/dumitrescustefan/Romanian-Transformers)
### Acknowledgements
Thanks [TPU Research Cloud](https://sites.research.google/trc/about/) for the TPUv3 machine needed to train this model!
|