Samuel Stevens
commited on
Commit
•
7b4abf1
1
Parent(s):
484209d
Add zero-shot example.
Browse files- README.md +2 -0
- examples/README.md +18 -0
- examples/zero_shot.py +298 -0
README.md
CHANGED
@@ -36,6 +36,8 @@ It is trained on [TreeOfLife-10M](https://huggingface.co/datasets/imageomics/Tre
|
|
36 |
Through rigorous benchmarking on a diverse set of fine-grained biological classification tasks, BioCLIP consistently outperformed existing baselines by 17% to 20% absolute.
|
37 |
Through intrinsic evaluation, we found that BioCLIP learned a hierarchical representation aligned to the tree of life, which demonstrates its potential for robust generalizability.
|
38 |
|
|
|
|
|
39 |
## Model Details
|
40 |
|
41 |
### Model Description
|
|
|
36 |
Through rigorous benchmarking on a diverse set of fine-grained biological classification tasks, BioCLIP consistently outperformed existing baselines by 17% to 20% absolute.
|
37 |
Through intrinsic evaluation, we found that BioCLIP learned a hierarchical representation aligned to the tree of life, which demonstrates its potential for robust generalizability.
|
38 |
|
39 |
+
**See the `examples/` directory for examples of how to use BioCLIP in zero-shot and few-shot settings.**
|
40 |
+
|
41 |
## Model Details
|
42 |
|
43 |
### Model Description
|
examples/README.md
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Examples
|
2 |
+
|
3 |
+
## Zero-Shot Classification
|
4 |
+
|
5 |
+
```sh
|
6 |
+
pip install torch # whatever version you want
|
7 |
+
pip install open_clip_torch numpy tqdm torchvision
|
8 |
+
```
|
9 |
+
|
10 |
+
Suppose you want to evaluate BioCLIP on zero-shot classification on two tasks, `<DATASET-NAME>` and `<DATASET2-NAME>`.
|
11 |
+
You can use `examples/zero_shot.py` to get top1 and top5 accuracy assuming your tasks are arranged as `torchvision`'s [`ImageFolder`](https://pytorch.org/vision/stable/generated/torchvision.datasets.ImageFolder.html) wants.
|
12 |
+
|
13 |
+
```sh
|
14 |
+
python examples/zero_shot.py \
|
15 |
+
--datasets <DATASET-NAME>=<DATASET-FOLDER> <DATASET2-NAME>=<DATASET2-FOLDER>
|
16 |
+
```
|
17 |
+
|
18 |
+
This will write to `logs/bioclip-zero-shot/results.json` with your results.
|
examples/zero_shot.py
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Do zero-shot image classification.
|
3 |
+
|
4 |
+
Writes the output to a plaintext and JSON format in the logs directory.
|
5 |
+
"""
|
6 |
+
import argparse
|
7 |
+
import ast
|
8 |
+
import contextlib
|
9 |
+
import json
|
10 |
+
import logging
|
11 |
+
import os
|
12 |
+
import random
|
13 |
+
import sys
|
14 |
+
|
15 |
+
import numpy as np
|
16 |
+
import open_clip
|
17 |
+
import torch
|
18 |
+
import torch.nn.functional as F
|
19 |
+
from torchvision import datasets
|
20 |
+
from tqdm import tqdm
|
21 |
+
|
22 |
+
log_format = "[%(asctime)s] [%(levelname)s] [%(name)s] %(message)s"
|
23 |
+
logging.basicConfig(level=logging.INFO, format=log_format)
|
24 |
+
logger = logging.getLogger("main")
|
25 |
+
|
26 |
+
openai_templates = [
|
27 |
+
lambda c: f"a bad photo of a {c}.",
|
28 |
+
lambda c: f"a photo of many {c}.",
|
29 |
+
lambda c: f"a sculpture of a {c}.",
|
30 |
+
lambda c: f"a photo of the hard to see {c}.",
|
31 |
+
lambda c: f"a low resolution photo of the {c}.",
|
32 |
+
lambda c: f"a rendering of a {c}.",
|
33 |
+
lambda c: f"graffiti of a {c}.",
|
34 |
+
lambda c: f"a bad photo of the {c}.",
|
35 |
+
lambda c: f"a cropped photo of the {c}.",
|
36 |
+
lambda c: f"a tattoo of a {c}.",
|
37 |
+
lambda c: f"the embroidered {c}.",
|
38 |
+
lambda c: f"a photo of a hard to see {c}.",
|
39 |
+
lambda c: f"a bright photo of a {c}.",
|
40 |
+
lambda c: f"a photo of a clean {c}.",
|
41 |
+
lambda c: f"a photo of a dirty {c}.",
|
42 |
+
lambda c: f"a dark photo of the {c}.",
|
43 |
+
lambda c: f"a drawing of a {c}.",
|
44 |
+
lambda c: f"a photo of my {c}.",
|
45 |
+
lambda c: f"the plastic {c}.",
|
46 |
+
lambda c: f"a photo of the cool {c}.",
|
47 |
+
lambda c: f"a close-up photo of a {c}.",
|
48 |
+
lambda c: f"a black and white photo of the {c}.",
|
49 |
+
lambda c: f"a painting of the {c}.",
|
50 |
+
lambda c: f"a painting of a {c}.",
|
51 |
+
lambda c: f"a pixelated photo of the {c}.",
|
52 |
+
lambda c: f"a sculpture of the {c}.",
|
53 |
+
lambda c: f"a bright photo of the {c}.",
|
54 |
+
lambda c: f"a cropped photo of a {c}.",
|
55 |
+
lambda c: f"a plastic {c}.",
|
56 |
+
lambda c: f"a photo of the dirty {c}.",
|
57 |
+
lambda c: f"a jpeg corrupted photo of a {c}.",
|
58 |
+
lambda c: f"a blurry photo of the {c}.",
|
59 |
+
lambda c: f"a photo of the {c}.",
|
60 |
+
lambda c: f"a good photo of the {c}.",
|
61 |
+
lambda c: f"a rendering of the {c}.",
|
62 |
+
lambda c: f"a {c} in a video game.",
|
63 |
+
lambda c: f"a photo of one {c}.",
|
64 |
+
lambda c: f"a doodle of a {c}.",
|
65 |
+
lambda c: f"a close-up photo of the {c}.",
|
66 |
+
lambda c: f"a photo of a {c}.",
|
67 |
+
lambda c: f"the origami {c}.",
|
68 |
+
lambda c: f"the {c} in a video game.",
|
69 |
+
lambda c: f"a sketch of a {c}.",
|
70 |
+
lambda c: f"a doodle of the {c}.",
|
71 |
+
lambda c: f"a origami {c}.",
|
72 |
+
lambda c: f"a low resolution photo of a {c}.",
|
73 |
+
lambda c: f"the toy {c}.",
|
74 |
+
lambda c: f"a rendition of the {c}.",
|
75 |
+
lambda c: f"a photo of the clean {c}.",
|
76 |
+
lambda c: f"a photo of a large {c}.",
|
77 |
+
lambda c: f"a rendition of a {c}.",
|
78 |
+
lambda c: f"a photo of a nice {c}.",
|
79 |
+
lambda c: f"a photo of a weird {c}.",
|
80 |
+
lambda c: f"a blurry photo of a {c}.",
|
81 |
+
lambda c: f"a cartoon {c}.",
|
82 |
+
lambda c: f"art of a {c}.",
|
83 |
+
lambda c: f"a sketch of the {c}.",
|
84 |
+
lambda c: f"a embroidered {c}.",
|
85 |
+
lambda c: f"a pixelated photo of a {c}.",
|
86 |
+
lambda c: f"itap of the {c}.",
|
87 |
+
lambda c: f"a jpeg corrupted photo of the {c}.",
|
88 |
+
lambda c: f"a good photo of a {c}.",
|
89 |
+
lambda c: f"a plushie {c}.",
|
90 |
+
lambda c: f"a photo of the nice {c}.",
|
91 |
+
lambda c: f"a photo of the small {c}.",
|
92 |
+
lambda c: f"a photo of the weird {c}.",
|
93 |
+
lambda c: f"the cartoon {c}.",
|
94 |
+
lambda c: f"art of the {c}.",
|
95 |
+
lambda c: f"a drawing of the {c}.",
|
96 |
+
lambda c: f"a photo of the large {c}.",
|
97 |
+
lambda c: f"a black and white photo of a {c}.",
|
98 |
+
lambda c: f"the plushie {c}.",
|
99 |
+
lambda c: f"a dark photo of a {c}.",
|
100 |
+
lambda c: f"itap of a {c}.",
|
101 |
+
lambda c: f"graffiti of the {c}.",
|
102 |
+
lambda c: f"a toy {c}.",
|
103 |
+
lambda c: f"itap of my {c}.",
|
104 |
+
lambda c: f"a photo of a cool {c}.",
|
105 |
+
lambda c: f"a photo of a small {c}.",
|
106 |
+
lambda c: f"a tattoo of the {c}.",
|
107 |
+
]
|
108 |
+
|
109 |
+
|
110 |
+
def parse_args(args):
|
111 |
+
class ParseKwargs(argparse.Action):
|
112 |
+
def __call__(self, parser, namespace, values, option_string=None):
|
113 |
+
kw = {}
|
114 |
+
for value in values:
|
115 |
+
key, value = value.split("=")
|
116 |
+
try:
|
117 |
+
kw[key] = ast.literal_eval(value)
|
118 |
+
except (ValueError, SyntaxError):
|
119 |
+
# fallback to string (avoid need to escape on command line)
|
120 |
+
kw[key] = str(value)
|
121 |
+
setattr(namespace, self.dest, kw)
|
122 |
+
|
123 |
+
parser = argparse.ArgumentParser()
|
124 |
+
parser.add_argument(
|
125 |
+
"--datasets",
|
126 |
+
type=str,
|
127 |
+
default=None,
|
128 |
+
nargs="+",
|
129 |
+
help="Path to dirs(s) with validation data. In the format NAME=PATH.",
|
130 |
+
action=ParseKwargs,
|
131 |
+
)
|
132 |
+
parser.add_argument(
|
133 |
+
"--logs", type=str, default="./logs", help="Where to write logs"
|
134 |
+
)
|
135 |
+
parser.add_argument(
|
136 |
+
"--exp", type=str, default="bioclip-zero-shot", help="Experiment name."
|
137 |
+
)
|
138 |
+
parser.add_argument(
|
139 |
+
"--workers", type=int, default=8, help="Number of dataloader workers per GPU."
|
140 |
+
)
|
141 |
+
parser.add_argument(
|
142 |
+
"--batch-size", type=int, default=64, help="Batch size per GPU."
|
143 |
+
)
|
144 |
+
parser.add_argument(
|
145 |
+
"--precision",
|
146 |
+
choices=["amp", "amp_bf16", "amp_bfloat16", "bf16", "fp32"],
|
147 |
+
default="amp",
|
148 |
+
help="Floating point precision.",
|
149 |
+
)
|
150 |
+
parser.add_argument("--seed", type=int, default=0, help="Default random seed.")
|
151 |
+
args = parser.parse_args(args)
|
152 |
+
os.makedirs(os.path.join(args.logs, args.exp), exist_ok=True)
|
153 |
+
|
154 |
+
return args
|
155 |
+
|
156 |
+
|
157 |
+
def make_txt_features(model, classnames, templates, args):
|
158 |
+
tokenizer = open_clip.get_tokenizer("hf-hub:imageomics/bioclip")
|
159 |
+
with torch.no_grad():
|
160 |
+
txt_features = []
|
161 |
+
for classname in tqdm(classnames):
|
162 |
+
classname = " ".join(word for word in classname.split("_") if word)
|
163 |
+
texts = [template(classname) for template in templates] # format with class
|
164 |
+
texts = tokenizer(texts).to(args.device) # tokenize
|
165 |
+
class_embeddings = model.encode_text(texts)
|
166 |
+
class_embedding = F.normalize(class_embeddings, dim=-1).mean(dim=0)
|
167 |
+
class_embedding /= class_embedding.norm()
|
168 |
+
txt_features.append(class_embedding)
|
169 |
+
txt_features = torch.stack(txt_features, dim=1).to(args.device)
|
170 |
+
return txt_features
|
171 |
+
|
172 |
+
|
173 |
+
def accuracy(output, target, topk=(1,)):
|
174 |
+
pred = output.topk(max(topk), 1, True, True)[1].t()
|
175 |
+
correct = pred.eq(target.view(1, -1).expand_as(pred))
|
176 |
+
return [correct[:k].reshape(-1).float().sum(0, keepdim=True).item() for k in topk]
|
177 |
+
|
178 |
+
|
179 |
+
def get_autocast(precision):
|
180 |
+
if precision == "amp":
|
181 |
+
return torch.cuda.amp.autocast
|
182 |
+
elif precision == "amp_bfloat16" or precision == "amp_bf16":
|
183 |
+
# amp_bfloat16 is more stable than amp float16 for clip training
|
184 |
+
return lambda: torch.cuda.amp.autocast(dtype=torch.bfloat16)
|
185 |
+
else:
|
186 |
+
return contextlib.suppress
|
187 |
+
|
188 |
+
|
189 |
+
def run(model, txt_features, dataloader, args):
|
190 |
+
autocast = get_autocast(args.precision)
|
191 |
+
cast_dtype = open_clip.get_cast_dtype(args.precision)
|
192 |
+
|
193 |
+
top1, top5, n = 0.0, 0.0, 0.0
|
194 |
+
|
195 |
+
with torch.no_grad():
|
196 |
+
for images, targets in tqdm(dataloader, unit_scale=args.batch_size):
|
197 |
+
images = images.to(args.device)
|
198 |
+
if cast_dtype is not None:
|
199 |
+
images = images.to(dtype=cast_dtype)
|
200 |
+
targets = targets.to(args.device)
|
201 |
+
|
202 |
+
with autocast():
|
203 |
+
image_features = model.encode_image(images)
|
204 |
+
image_features = F.normalize(image_features, dim=-1)
|
205 |
+
logits = model.logit_scale.exp() * image_features @ txt_features
|
206 |
+
|
207 |
+
# Measure accuracy
|
208 |
+
acc1, acc5 = accuracy(logits, targets, topk=(1, 5))
|
209 |
+
top1 += acc1
|
210 |
+
top5 += acc5
|
211 |
+
n += images.size(0)
|
212 |
+
|
213 |
+
top1 = top1 / n
|
214 |
+
top5 = top5 / n
|
215 |
+
return top1, top5
|
216 |
+
|
217 |
+
|
218 |
+
def evaluate(model, data, args):
|
219 |
+
results = {}
|
220 |
+
|
221 |
+
logger.info("Starting zero-shot classification.")
|
222 |
+
|
223 |
+
for split in data:
|
224 |
+
logger.info("Building zero-shot %s classifier.", split)
|
225 |
+
|
226 |
+
classnames = data[split].dataset.classes
|
227 |
+
classnames = [name.replace("_", " ") for name in classnames]
|
228 |
+
|
229 |
+
txt_features = make_txt_features(model, classnames, openai_templates, args)
|
230 |
+
|
231 |
+
logger.info("Got text features.")
|
232 |
+
top1, top5 = run(model, txt_features, data[split], args)
|
233 |
+
|
234 |
+
logger.info("%s-top1: %.3f", split, top1 * 100)
|
235 |
+
logger.info("%s-top5: %.3f", split, top5 * 100)
|
236 |
+
|
237 |
+
results[f"{split}-top1"] = top1 * 100
|
238 |
+
results[f"{split}-top5"] = top5 * 100
|
239 |
+
|
240 |
+
logger.info("Finished zero-shot %s.", split)
|
241 |
+
|
242 |
+
logger.info("Finished zero-shot classification.")
|
243 |
+
|
244 |
+
return results
|
245 |
+
|
246 |
+
|
247 |
+
if __name__ == "__main__":
|
248 |
+
args = parse_args(sys.argv[1:])
|
249 |
+
|
250 |
+
if torch.cuda.is_available():
|
251 |
+
# This enables tf32 on Ampere GPUs which is only 8% slower than
|
252 |
+
# float16 and almost as accurate as float32
|
253 |
+
# This was a default in pytorch until 1.12
|
254 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
255 |
+
torch.backends.cudnn.benchmark = True
|
256 |
+
torch.backends.cudnn.deterministic = False
|
257 |
+
|
258 |
+
# Init torch device
|
259 |
+
if torch.cuda.is_available():
|
260 |
+
device = "cuda:0"
|
261 |
+
torch.cuda.set_device(device)
|
262 |
+
else:
|
263 |
+
device = "cpu"
|
264 |
+
args.device = device
|
265 |
+
|
266 |
+
# Random seeding
|
267 |
+
torch.manual_seed(args.seed)
|
268 |
+
np.random.seed(args.seed)
|
269 |
+
random.seed(args.seed)
|
270 |
+
|
271 |
+
# Load model.
|
272 |
+
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms(
|
273 |
+
"hf-hub:imageomics/bioclip"
|
274 |
+
)
|
275 |
+
|
276 |
+
# Write datasets
|
277 |
+
params_file = os.path.join(args.logs, args.exp, "params.json")
|
278 |
+
with open(params_file, "w") as fd:
|
279 |
+
params = {name: getattr(args, name) for name in vars(args)}
|
280 |
+
json.dump(params, fd, sort_keys=True, indent=4)
|
281 |
+
|
282 |
+
# Initialize datasets.
|
283 |
+
data = {}
|
284 |
+
for split, path in args.datasets.items():
|
285 |
+
data[split] = torch.utils.data.DataLoader(
|
286 |
+
datasets.ImageFolder(path, transform=preprocess_val),
|
287 |
+
batch_size=args.batch_size,
|
288 |
+
num_workers=args.workers,
|
289 |
+
sampler=None,
|
290 |
+
shuffle=False,
|
291 |
+
)
|
292 |
+
|
293 |
+
model.eval()
|
294 |
+
results = evaluate(model, data, args)
|
295 |
+
|
296 |
+
results_file = os.path.join(args.logs, args.exp, "results.json")
|
297 |
+
with open(results_file, "w") as fd:
|
298 |
+
json.dump(results, fd, indent=4, sort_keys=True)
|