qwen-final-cnn_dailymail
Browse files
README.md
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Qwen/Qwen-14B
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- cnn_dailymail
|
7 |
+
model-index:
|
8 |
+
- name: final_cnn_dailymail
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# final_cnn_dailymail
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [Qwen/Qwen-14B](https://huggingface.co/Qwen/Qwen-14B) on the cnn_dailymail dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 2.2127
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 1e-05
|
39 |
+
- train_batch_size: 1
|
40 |
+
- eval_batch_size: 1
|
41 |
+
- seed: 42
|
42 |
+
- gradient_accumulation_steps: 16
|
43 |
+
- total_train_batch_size: 16
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: cosine
|
46 |
+
- lr_scheduler_warmup_steps: 0.01
|
47 |
+
- num_epochs: 1
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
53 |
+
| 1.9757 | 0.02 | 100 | 1.9261 |
|
54 |
+
| 1.9258 | 0.04 | 200 | 1.8833 |
|
55 |
+
| 1.8977 | 0.06 | 300 | 1.8657 |
|
56 |
+
| 1.8903 | 0.08 | 400 | 1.8630 |
|
57 |
+
| 1.8858 | 0.1 | 500 | 1.8638 |
|
58 |
+
| 1.89 | 0.12 | 600 | 1.8636 |
|
59 |
+
| 1.873 | 0.14 | 700 | 1.8637 |
|
60 |
+
| 1.8908 | 0.16 | 800 | 1.8637 |
|
61 |
+
| 1.8791 | 0.18 | 900 | 1.8626 |
|
62 |
+
| 1.8851 | 0.2 | 1000 | 1.8634 |
|
63 |
+
| 1.89 | 0.22 | 1100 | 1.8651 |
|
64 |
+
| 1.8889 | 0.24 | 1200 | 1.8681 |
|
65 |
+
| 1.8896 | 0.26 | 1300 | 1.8708 |
|
66 |
+
| 1.8817 | 0.28 | 1400 | 1.8739 |
|
67 |
+
| 1.9003 | 0.3 | 1500 | 1.8791 |
|
68 |
+
| 1.9005 | 0.32 | 1600 | 1.8825 |
|
69 |
+
| 1.9024 | 0.34 | 1700 | 1.8864 |
|
70 |
+
| 1.9204 | 0.36 | 1800 | 1.8929 |
|
71 |
+
| 1.9182 | 0.38 | 1900 | 1.8955 |
|
72 |
+
| 1.9289 | 0.4 | 2000 | 1.9035 |
|
73 |
+
| 1.9348 | 0.42 | 2100 | 1.9157 |
|
74 |
+
| 1.9453 | 0.44 | 2200 | 1.9277 |
|
75 |
+
| 1.9689 | 0.46 | 2300 | 1.9457 |
|
76 |
+
| 1.9829 | 0.48 | 2400 | 1.9596 |
|
77 |
+
| 1.9874 | 0.5 | 2500 | 1.9803 |
|
78 |
+
| 2.0148 | 0.52 | 2600 | 1.9991 |
|
79 |
+
| 2.0391 | 0.54 | 2700 | 2.0249 |
|
80 |
+
| 2.0619 | 0.56 | 2800 | 2.0477 |
|
81 |
+
| 2.0736 | 0.58 | 2900 | 2.0678 |
|
82 |
+
| 2.0957 | 0.6 | 3000 | 2.0825 |
|
83 |
+
| 2.1223 | 0.62 | 3100 | 2.1097 |
|
84 |
+
| 2.1357 | 0.64 | 3200 | 2.1164 |
|
85 |
+
| 2.1759 | 0.66 | 3300 | 2.1524 |
|
86 |
+
| 2.168 | 0.68 | 3400 | 2.1650 |
|
87 |
+
| 2.1842 | 0.7 | 3500 | 2.1637 |
|
88 |
+
| 2.1956 | 0.72 | 3600 | 2.1775 |
|
89 |
+
| 2.2131 | 0.74 | 3700 | 2.1888 |
|
90 |
+
| 2.198 | 0.76 | 3800 | 2.1953 |
|
91 |
+
| 2.2231 | 0.78 | 3900 | 2.1994 |
|
92 |
+
| 2.2292 | 0.8 | 4000 | 2.2080 |
|
93 |
+
| 2.2343 | 0.82 | 4100 | 2.2093 |
|
94 |
+
| 2.2261 | 0.84 | 4200 | 2.2009 |
|
95 |
+
| 2.2104 | 0.86 | 4300 | 2.2015 |
|
96 |
+
| 2.2255 | 0.88 | 4400 | 2.2077 |
|
97 |
+
| 2.2299 | 0.9 | 4500 | 2.2099 |
|
98 |
+
| 2.2253 | 0.92 | 4600 | 2.2100 |
|
99 |
+
| 2.2239 | 0.94 | 4700 | 2.2116 |
|
100 |
+
| 2.2322 | 0.96 | 4800 | 2.2122 |
|
101 |
+
| 2.2457 | 0.98 | 4900 | 2.2127 |
|
102 |
+
| 2.2325 | 1.0 | 5000 | 2.2127 |
|
103 |
+
|
104 |
+
|
105 |
+
### Framework versions
|
106 |
+
|
107 |
+
- Transformers 4.32.0
|
108 |
+
- Pytorch 2.1.0
|
109 |
+
- Datasets 2.14.7
|
110 |
+
- Tokenizers 0.13.3
|