--- base_model: Qwen/Qwen-14B tags: - generated_from_trainer model-index: - name: nampdn-ai_tiny-textbooks results: [] --- # nampdn-ai_tiny-textbooks This model is a fine-tuned version of [Qwen/Qwen-14B](https://huggingface.co/Qwen/Qwen-14B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4456 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 0.01 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3995 | 0.02 | 63 | 2.4534 | | 2.4114 | 0.04 | 126 | 2.4578 | | 2.3929 | 0.06 | 189 | 2.4563 | | 2.4145 | 0.08 | 252 | 2.4551 | | 2.4145 | 0.1 | 315 | 2.4539 | | 2.3687 | 0.12 | 378 | 2.4537 | | 2.3899 | 0.14 | 441 | 2.4537 | | 2.3827 | 0.16 | 504 | 2.4513 | | 2.4124 | 0.18 | 567 | 2.4509 | | 2.3839 | 0.2 | 630 | 2.4502 | | 2.3962 | 0.22 | 693 | 2.4489 | | 2.4156 | 0.24 | 756 | 2.4498 | | 2.4085 | 0.26 | 819 | 2.4491 | | 2.4303 | 0.28 | 882 | 2.4480 | | 2.4038 | 0.3 | 945 | 2.4473 | | 2.397 | 0.32 | 1008 | 2.4474 | | 2.4259 | 0.34 | 1071 | 2.4484 | | 2.4248 | 0.36 | 1134 | 2.4481 | | 2.3889 | 0.38 | 1197 | 2.4480 | | 2.397 | 0.4 | 1260 | 2.4472 | | 2.3966 | 0.42 | 1323 | 2.4485 | | 2.3764 | 0.44 | 1386 | 2.4464 | | 2.389 | 0.46 | 1449 | 2.4477 | | 2.4051 | 0.48 | 1512 | 2.4477 | | 2.3919 | 0.5 | 1575 | 2.4483 | | 2.3874 | 0.52 | 1638 | 2.4475 | | 2.3575 | 0.54 | 1701 | 2.4457 | | 2.3941 | 0.56 | 1764 | 2.4468 | | 2.4167 | 0.58 | 1827 | 2.4467 | | 2.3787 | 0.6 | 1890 | 2.4466 | | 2.3838 | 0.62 | 1953 | 2.4472 | | 2.4292 | 0.65 | 2016 | 2.4465 | | 2.3788 | 0.67 | 2079 | 2.4459 | | 2.4314 | 0.69 | 2142 | 2.4466 | | 2.4071 | 0.71 | 2205 | 2.4462 | | 2.3655 | 0.73 | 2268 | 2.4462 | | 2.427 | 0.75 | 2331 | 2.4463 | | 2.3794 | 0.77 | 2394 | 2.4460 | | 2.3645 | 0.79 | 2457 | 2.4458 | | 2.393 | 0.81 | 2520 | 2.4458 | | 2.4032 | 0.83 | 2583 | 2.4457 | | 2.3818 | 0.85 | 2646 | 2.4456 | | 2.4262 | 0.87 | 2709 | 2.4457 | | 2.3719 | 0.89 | 2772 | 2.4457 | | 2.3935 | 0.91 | 2835 | 2.4457 | | 2.393 | 0.93 | 2898 | 2.4456 | | 2.3695 | 0.95 | 2961 | 2.4455 | | 2.3878 | 0.97 | 3024 | 2.4454 | | 2.3873 | 0.99 | 3087 | 2.4456 | ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.5.2 - Tokenizers 0.14.0