File size: 3,389 Bytes
5bfe40f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
---
base_model: TinyLlama/TinyLlama_v1.1
library_name: peft
license: apache-2.0
tags:
- unsloth
- generated_from_trainer
model-index:
- name: tinyllama_magiccoder_ortho
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tinyllama_magiccoder_ortho
This model is a fine-tuned version of [TinyLlama/TinyLlama_v1.1](https://huggingface.co/TinyLlama/TinyLlama_v1.1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4401
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.02
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.8608 | 0.0262 | 4 | 1.8810 |
| 1.7875 | 0.0523 | 8 | 1.6839 |
| 1.6211 | 0.0785 | 12 | 1.6379 |
| 1.5275 | 0.1047 | 16 | 1.5652 |
| 1.5674 | 0.1308 | 20 | 1.5608 |
| 1.4798 | 0.1570 | 24 | 1.5422 |
| 1.484 | 0.1832 | 28 | 1.5231 |
| 1.524 | 0.2093 | 32 | 1.5137 |
| 1.4406 | 0.2355 | 36 | 1.5169 |
| 1.5328 | 0.2617 | 40 | 1.5073 |
| 1.5037 | 0.2878 | 44 | 1.4938 |
| 1.5445 | 0.3140 | 48 | 1.4939 |
| 1.5157 | 0.3401 | 52 | 1.4924 |
| 1.4724 | 0.3663 | 56 | 1.4748 |
| 1.5457 | 0.3925 | 60 | 1.4869 |
| 1.5126 | 0.4186 | 64 | 1.4744 |
| 1.4564 | 0.4448 | 68 | 1.4726 |
| 1.4628 | 0.4710 | 72 | 1.4695 |
| 1.4244 | 0.4971 | 76 | 1.4711 |
| 1.5274 | 0.5233 | 80 | 1.4654 |
| 1.5459 | 0.5495 | 84 | 1.4615 |
| 1.4562 | 0.5756 | 88 | 1.4600 |
| 1.3771 | 0.6018 | 92 | 1.4578 |
| 1.3837 | 0.6280 | 96 | 1.4537 |
| 1.46 | 0.6541 | 100 | 1.4546 |
| 1.4711 | 0.6803 | 104 | 1.4554 |
| 1.4257 | 0.7065 | 108 | 1.4455 |
| 1.4661 | 0.7326 | 112 | 1.4473 |
| 1.4269 | 0.7588 | 116 | 1.4469 |
| 1.4269 | 0.7850 | 120 | 1.4433 |
| 1.4514 | 0.8111 | 124 | 1.4461 |
| 1.4349 | 0.8373 | 128 | 1.4458 |
| 1.3174 | 0.8635 | 132 | 1.4409 |
| 1.4861 | 0.8896 | 136 | 1.4399 |
| 1.3536 | 0.9158 | 140 | 1.4408 |
| 1.408 | 0.9419 | 144 | 1.4404 |
| 1.4435 | 0.9681 | 148 | 1.4401 |
| 1.4317 | 0.9943 | 152 | 1.4401 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1 |