File size: 5,330 Bytes
b5ba7a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import numpy as np
from fastapi import FastAPI, Body
from fastapi.exceptions import HTTPException
from PIL import Image

import gradio as gr
import json

from modules.api.models import *
from modules.api import api

from scripts import external_code, global_state
from scripts.processor import preprocessor_sliders_config
from scripts.logging import logger


def encode_to_base64(image):
    if type(image) is str:
        return image
    elif type(image) is Image.Image:
        return api.encode_pil_to_base64(image)
    elif type(image) is np.ndarray:
        return encode_np_to_base64(image)
    else:
        return ""

def encode_np_to_base64(image):
    pil = Image.fromarray(image)
    return api.encode_pil_to_base64(pil)

def controlnet_api(_: gr.Blocks, app: FastAPI):
    @app.get("/controlnet/version")
    async def version():
        return {"version": external_code.get_api_version()}

    @app.get("/controlnet/model_list")
    async def model_list():
        up_to_date_model_list = external_code.get_models(update=True)
        logger.debug(up_to_date_model_list)
        return {"model_list": up_to_date_model_list}

    @app.get("/controlnet/module_list")
    async def module_list(alias_names: bool = False):
        _module_list = external_code.get_modules(alias_names)
        logger.debug(_module_list)
        
        return {
            "module_list": _module_list,
            "module_detail": external_code.get_modules_detail(alias_names)
        }
    
    @app.get("/controlnet/settings")
    async def settings():
        max_models_num = external_code.get_max_models_num()
        return {"control_net_max_models_num":max_models_num}

    cached_cn_preprocessors = global_state.cache_preprocessors(global_state.cn_preprocessor_modules)
    @app.post("/controlnet/detect")
    async def detect(
        controlnet_module: str = Body("none", title='Controlnet Module'),
        controlnet_input_images: List[str] = Body([], title='Controlnet Input Images'),
        controlnet_processor_res: int = Body(512, title='Controlnet Processor Resolution'),
        controlnet_threshold_a: float = Body(64, title='Controlnet Threshold a'),
        controlnet_threshold_b: float = Body(64, title='Controlnet Threshold b')
    ):
        controlnet_module = global_state.reverse_preprocessor_aliases.get(controlnet_module, controlnet_module)

        if controlnet_module not in cached_cn_preprocessors:
            raise HTTPException(
                status_code=422, detail="Module not available")

        if len(controlnet_input_images) == 0:
            raise HTTPException(
                status_code=422, detail="No image selected")

        logger.info(f"Detecting {str(len(controlnet_input_images))} images with the {controlnet_module} module.")

        results = []

        processor_module = cached_cn_preprocessors[controlnet_module]

        for input_image in controlnet_input_images:
            img = external_code.to_base64_nparray(input_image)
            results.append(processor_module(img, res=controlnet_processor_res, thr_a=controlnet_threshold_a, thr_b=controlnet_threshold_b)[0])

        global_state.cn_preprocessor_unloadable.get(controlnet_module, lambda: None)()
        results64 = list(map(encode_to_base64, results))
        return {"images": results64, "info": "Success"}

    @app.post("/controlnet/openpose/detect")
    async def detect(
        controlnet_module: str = Body("none", title='Controlnet Module'),
        controlnet_input_images: List[str] = Body([], title='Controlnet Input Images'),
        controlnet_processor_res: int = Body(512, title='Controlnet Processor Resolution'),
        controlnet_threshold_a: float = Body(64, title='Controlnet Threshold a'),
        controlnet_threshold_b: float = Body(64, title='Controlnet Threshold b')
    ):
        controlnet_module = global_state.reverse_preprocessor_aliases.get(controlnet_module, controlnet_module)

        class JsonAcceptor:
            def __init__(self) -> None:
                self.value = ''

            def accept(self, json_string: str) -> None:
                self.value = json_string
        json_acceptor = JsonAcceptor()

        if controlnet_module not in global_state.cn_preprocessor_modules:
            return {"images": [], "info": "Module not available"}
        if len(controlnet_input_images) == 0:
            return {"images": [], "info": "No image selected"}
        
        print(f"Detecting {str(len(controlnet_input_images))} images with the {controlnet_module} module.")

        results = []

        processor_module = global_state.cn_preprocessor_modules[controlnet_module]

        for input_image in controlnet_input_images:
            img = external_code.to_base64_nparray(input_image)
            results.append(processor_module(img, res=controlnet_processor_res, thr_a=controlnet_threshold_a, thr_b=controlnet_threshold_b, json_pose_callback=json_acceptor.accept)[0])

        global_state.cn_preprocessor_unloadable.get(controlnet_module, lambda: None)()
        results64 = list(map(encode_to_base64, results))
        return {"images": results64, "keypoints":  json.loads(json_acceptor.value), "info": "Success"}

try:
    import modules.script_callbacks as script_callbacks

    script_callbacks.on_app_started(controlnet_api)
except:
    pass