File size: 5,330 Bytes
b5ba7a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import numpy as np
from fastapi import FastAPI, Body
from fastapi.exceptions import HTTPException
from PIL import Image
import gradio as gr
import json
from modules.api.models import *
from modules.api import api
from scripts import external_code, global_state
from scripts.processor import preprocessor_sliders_config
from scripts.logging import logger
def encode_to_base64(image):
if type(image) is str:
return image
elif type(image) is Image.Image:
return api.encode_pil_to_base64(image)
elif type(image) is np.ndarray:
return encode_np_to_base64(image)
else:
return ""
def encode_np_to_base64(image):
pil = Image.fromarray(image)
return api.encode_pil_to_base64(pil)
def controlnet_api(_: gr.Blocks, app: FastAPI):
@app.get("/controlnet/version")
async def version():
return {"version": external_code.get_api_version()}
@app.get("/controlnet/model_list")
async def model_list():
up_to_date_model_list = external_code.get_models(update=True)
logger.debug(up_to_date_model_list)
return {"model_list": up_to_date_model_list}
@app.get("/controlnet/module_list")
async def module_list(alias_names: bool = False):
_module_list = external_code.get_modules(alias_names)
logger.debug(_module_list)
return {
"module_list": _module_list,
"module_detail": external_code.get_modules_detail(alias_names)
}
@app.get("/controlnet/settings")
async def settings():
max_models_num = external_code.get_max_models_num()
return {"control_net_max_models_num":max_models_num}
cached_cn_preprocessors = global_state.cache_preprocessors(global_state.cn_preprocessor_modules)
@app.post("/controlnet/detect")
async def detect(
controlnet_module: str = Body("none", title='Controlnet Module'),
controlnet_input_images: List[str] = Body([], title='Controlnet Input Images'),
controlnet_processor_res: int = Body(512, title='Controlnet Processor Resolution'),
controlnet_threshold_a: float = Body(64, title='Controlnet Threshold a'),
controlnet_threshold_b: float = Body(64, title='Controlnet Threshold b')
):
controlnet_module = global_state.reverse_preprocessor_aliases.get(controlnet_module, controlnet_module)
if controlnet_module not in cached_cn_preprocessors:
raise HTTPException(
status_code=422, detail="Module not available")
if len(controlnet_input_images) == 0:
raise HTTPException(
status_code=422, detail="No image selected")
logger.info(f"Detecting {str(len(controlnet_input_images))} images with the {controlnet_module} module.")
results = []
processor_module = cached_cn_preprocessors[controlnet_module]
for input_image in controlnet_input_images:
img = external_code.to_base64_nparray(input_image)
results.append(processor_module(img, res=controlnet_processor_res, thr_a=controlnet_threshold_a, thr_b=controlnet_threshold_b)[0])
global_state.cn_preprocessor_unloadable.get(controlnet_module, lambda: None)()
results64 = list(map(encode_to_base64, results))
return {"images": results64, "info": "Success"}
@app.post("/controlnet/openpose/detect")
async def detect(
controlnet_module: str = Body("none", title='Controlnet Module'),
controlnet_input_images: List[str] = Body([], title='Controlnet Input Images'),
controlnet_processor_res: int = Body(512, title='Controlnet Processor Resolution'),
controlnet_threshold_a: float = Body(64, title='Controlnet Threshold a'),
controlnet_threshold_b: float = Body(64, title='Controlnet Threshold b')
):
controlnet_module = global_state.reverse_preprocessor_aliases.get(controlnet_module, controlnet_module)
class JsonAcceptor:
def __init__(self) -> None:
self.value = ''
def accept(self, json_string: str) -> None:
self.value = json_string
json_acceptor = JsonAcceptor()
if controlnet_module not in global_state.cn_preprocessor_modules:
return {"images": [], "info": "Module not available"}
if len(controlnet_input_images) == 0:
return {"images": [], "info": "No image selected"}
print(f"Detecting {str(len(controlnet_input_images))} images with the {controlnet_module} module.")
results = []
processor_module = global_state.cn_preprocessor_modules[controlnet_module]
for input_image in controlnet_input_images:
img = external_code.to_base64_nparray(input_image)
results.append(processor_module(img, res=controlnet_processor_res, thr_a=controlnet_threshold_a, thr_b=controlnet_threshold_b, json_pose_callback=json_acceptor.accept)[0])
global_state.cn_preprocessor_unloadable.get(controlnet_module, lambda: None)()
results64 = list(map(encode_to_base64, results))
return {"images": results64, "keypoints": json.loads(json_acceptor.value), "info": "Success"}
try:
import modules.script_callbacks as script_callbacks
script_callbacks.on_app_started(controlnet_api)
except:
pass
|