File size: 8,703 Bytes
b5ba7a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os.path
import stat
import functools
from collections import OrderedDict

from modules import shared, scripts, sd_models
from modules.paths import models_path
from scripts.processor import *
from scripts.utils import ndarray_lru_cache
from scripts.logging import logger

from typing import Dict, Callable, Optional

CN_MODEL_EXTS = [".pt", ".pth", ".ckpt", ".safetensors"]
cn_models_dir = os.path.join(models_path, "ControlNet")
cn_models_dir_old = os.path.join(scripts.basedir(), "models")
cn_models = OrderedDict()      # "My_Lora(abcd1234)" -> C:/path/to/model.safetensors
cn_models_names = {}  # "my_lora" -> "My_Lora(abcd1234)"

def cache_preprocessors(preprocessor_modules: Dict[str, Callable]) -> Dict[str, Callable]:
    """ We want to share the preprocessor results in a single big cache, instead of a small 
     cache for each preprocessor function. """
    CACHE_SIZE = getattr(shared.cmd_opts, "controlnet_preprocessor_cache_size", 0)

    # Set CACHE_SIZE = 0 will completely remove the caching layer. This can be 
    # helpful when debugging preprocessor code.
    if CACHE_SIZE == 0:
        return preprocessor_modules
    
    logger.debug(f'Create LRU cache (max_size={CACHE_SIZE}) for preprocessor results.')

    @ndarray_lru_cache(max_size=CACHE_SIZE)
    def unified_preprocessor(preprocessor_name: str, *args, **kwargs):
        logger.debug(f'Calling preprocessor {preprocessor_name} outside of cache.')
        return preprocessor_modules[preprocessor_name](*args, **kwargs)
    
    # TODO: Introduce a seed parameter for shuffle preprocessor?
    uncacheable_preprocessors = ['shuffle']

    return {
        k: (
            v if k in uncacheable_preprocessors 
            else functools.partial(unified_preprocessor, k)
        )
        for k, v
        in preprocessor_modules.items()
    }

cn_preprocessor_modules = {
    "none": lambda x, *args, **kwargs: (x, True),
    "canny": canny,
    "depth": midas,
    "depth_leres": functools.partial(leres, boost=False),
    "depth_leres++": functools.partial(leres, boost=True),
    "hed": hed,
    "hed_safe": hed_safe,
    "mediapipe_face": mediapipe_face,
    "mlsd": mlsd,
    "normal_map": midas_normal,
    "openpose": functools.partial(g_openpose_model.run_model, include_body=True, include_hand=False, include_face=False),
    "openpose_hand": functools.partial(g_openpose_model.run_model, include_body=True, include_hand=True, include_face=False),
    "openpose_face": functools.partial(g_openpose_model.run_model, include_body=True, include_hand=False, include_face=True),
    "openpose_faceonly": functools.partial(g_openpose_model.run_model, include_body=False, include_hand=False, include_face=True),
    "openpose_full": functools.partial(g_openpose_model.run_model, include_body=True, include_hand=True, include_face=True),
    "clip_vision": clip,
    "color": color,
    "pidinet": pidinet,
    "pidinet_safe": pidinet_safe,
    "pidinet_sketch": pidinet_ts,
    "pidinet_scribble": scribble_pidinet,
    "scribble_xdog": scribble_xdog,
    "scribble_hed": scribble_hed,
    "segmentation": uniformer,
    "threshold": threshold,
    "depth_zoe": zoe_depth,
    "normal_bae": normal_bae,
    "oneformer_coco": oneformer_coco,
    "oneformer_ade20k": oneformer_ade20k,
    "lineart": lineart,
    "lineart_coarse": lineart_coarse,
    "lineart_anime": lineart_anime,
    "lineart_standard": lineart_standard,
    "shuffle": shuffle,
    "tile_resample": tile_resample,
    "invert": invert,
    "lineart_anime_denoise": lineart_anime_denoise,
    "reference_only": identity,
    "reference_adain": identity,
    "reference_adain+attn": identity,
    "inpaint": identity,
    "inpaint_only": identity,
    "inpaint_only+lama": lama_inpaint,
    "tile_colorfix": identity,
    "tile_colorfix+sharp": identity,
}

cn_preprocessor_unloadable = {
    "hed": unload_hed,
    "fake_scribble": unload_hed,
    "mlsd": unload_mlsd,
    "clip": unload_clip,
    "depth": unload_midas,
    "depth_leres": unload_leres,
    "normal_map": unload_midas,
    "pidinet": unload_pidinet,
    "openpose": g_openpose_model.unload,
    "openpose_hand": g_openpose_model.unload,
    "openpose_face": g_openpose_model.unload,
    "openpose_full": g_openpose_model.unload,
    "segmentation": unload_uniformer,
    "depth_zoe": unload_zoe_depth,
    "normal_bae": unload_normal_bae,
    "oneformer_coco": unload_oneformer_coco,
    "oneformer_ade20k": unload_oneformer_ade20k,
    "lineart": unload_lineart,
    "lineart_coarse": unload_lineart_coarse,
    "lineart_anime": unload_lineart_anime,
    "lineart_anime_denoise": unload_lineart_anime_denoise,
    "inpaint_only+lama": unload_lama_inpaint
}

preprocessor_aliases = {
    "invert": "invert (from white bg & black line)",
    "lineart_standard": "lineart_standard (from white bg & black line)",
    "lineart": "lineart_realistic",
    "color": "t2ia_color_grid",
    "clip_vision": "t2ia_style_clipvision",
    "pidinet_sketch": "t2ia_sketch_pidi",
    "depth": "depth_midas",
    "normal_map": "normal_midas",
    "hed": "softedge_hed",
    "hed_safe": "softedge_hedsafe",
    "pidinet": "softedge_pidinet",
    "pidinet_safe": "softedge_pidisafe",
    "segmentation": "seg_ufade20k",
    "oneformer_coco": "seg_ofcoco",
    "oneformer_ade20k": "seg_ofade20k",
    "pidinet_scribble": "scribble_pidinet",
    "inpaint": "inpaint_global_harmonious",
}

ui_preprocessor_keys = ['none', preprocessor_aliases['invert']]
ui_preprocessor_keys += sorted([preprocessor_aliases.get(k, k)
                                for k in cn_preprocessor_modules.keys()
                                if preprocessor_aliases.get(k, k) not in ui_preprocessor_keys])

reverse_preprocessor_aliases = {preprocessor_aliases[k]: k for k in preprocessor_aliases.keys()}

def get_module_basename(module: Optional[str]) -> str:
    if module is None:
        module = 'none'
    return reverse_preprocessor_aliases.get(module, module)

default_conf = os.path.join("models", "cldm_v15.yaml")
default_conf_adapter = os.path.join("models", "t2iadapter_sketch_sd14v1.yaml")
default_detectedmap_dir = os.path.join("detected_maps")
script_dir = scripts.basedir()

os.makedirs(cn_models_dir, exist_ok=True)

def traverse_all_files(curr_path, model_list):
    f_list = [
        (os.path.join(curr_path, entry.name), entry.stat())
        for entry in os.scandir(curr_path)
        if os.path.isdir(curr_path)
    ]
    for f_info in f_list:
        fname, fstat = f_info
        if os.path.splitext(fname)[1] in CN_MODEL_EXTS:
            model_list.append(f_info)
        elif stat.S_ISDIR(fstat.st_mode):
            model_list = traverse_all_files(fname, model_list)
    return model_list


def get_all_models(sort_by, filter_by, path):
    res = OrderedDict()
    fileinfos = traverse_all_files(path, [])
    filter_by = filter_by.strip(" ")
    if len(filter_by) != 0:
        fileinfos = [x for x in fileinfos if filter_by.lower()
                     in os.path.basename(x[0]).lower()]
    if sort_by == "name":
        fileinfos = sorted(fileinfos, key=lambda x: os.path.basename(x[0]))
    elif sort_by == "date":
        fileinfos = sorted(fileinfos, key=lambda x: -x[1].st_mtime)
    elif sort_by == "path name":
        fileinfos = sorted(fileinfos)

    for finfo in fileinfos:
        filename = finfo[0]
        name = os.path.splitext(os.path.basename(filename))[0]
        # Prevent a hypothetical "None.pt" from being listed.
        if name != "None":
            res[name + f" [{sd_models.model_hash(filename)}]"] = filename

    return res


def update_cn_models():
    cn_models.clear()
    ext_dirs = (shared.opts.data.get("control_net_models_path", None), getattr(shared.cmd_opts, 'controlnet_dir', None))
    extra_lora_paths = (extra_lora_path for extra_lora_path in ext_dirs
                if extra_lora_path is not None and os.path.exists(extra_lora_path))
    paths = [cn_models_dir, cn_models_dir_old, *extra_lora_paths]

    for path in paths:
        sort_by = shared.opts.data.get(
            "control_net_models_sort_models_by", "name")
        filter_by = shared.opts.data.get("control_net_models_name_filter", "")
        found = get_all_models(sort_by, filter_by, path)
        cn_models.update({**found, **cn_models})

    # insert "None" at the beginning of `cn_models` in-place
    cn_models_copy = OrderedDict(cn_models)
    cn_models.clear()
    cn_models.update({**{"None": None}, **cn_models_copy})

    cn_models_names.clear()
    for name_and_hash, filename in cn_models.items():
        if filename is None:
            continue
        name = os.path.splitext(os.path.basename(filename))[0].lower()
        cn_models_names[name] = name_and_hash