File size: 3,248 Bytes
b5ba7a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import unittest
import numpy as np
import importlib
utils = importlib.import_module('extensions.sd-webui-controlnet.tests.utils', 'utils')
utils.setup_test_env()
from annotator.openpose.util import faceDetect, handDetect
from annotator.openpose.body import Keypoint, BodyResult
class TestFaceDetect(unittest.TestCase):
def test_no_faces(self):
oriImg = np.zeros((100, 100, 3), dtype=np.uint8)
body = BodyResult([None] * 18, total_score=3, total_parts=0)
expected_result = None
result = faceDetect(body, oriImg)
self.assertEqual(result, expected_result)
def test_single_face(self):
body = BodyResult([
Keypoint(50, 50),
*([None] * 13),
Keypoint(30, 40),
Keypoint(70, 40),
Keypoint(20, 50),
Keypoint(80, 50),
], total_score=2, total_parts=5)
oriImg = np.zeros((100, 100, 3), dtype=np.uint8)
expected_result = (0, 0, 120)
result = faceDetect(body, oriImg)
self.assertEqual(result, expected_result)
class TestHandDetect(unittest.TestCase):
def test_no_hands(self):
oriImg = np.zeros((100, 100, 3), dtype=np.uint8)
body = BodyResult([None] * 18, total_score=3, total_parts=0)
expected_result = []
result = handDetect(body, oriImg)
self.assertEqual(result, expected_result)
def test_single_left_hand(self):
oriImg = np.zeros((100, 100, 3), dtype=np.uint8)
body = BodyResult([
None, None, None, None, None,
Keypoint(20, 20),
Keypoint(40, 30),
Keypoint(60, 40),
*([None] * 8),
Keypoint(20, 60),
Keypoint(40, 70),
Keypoint(60, 80)
], total_score=3, total_parts=0.5)
expected_result = [(49, 26, 33, True)]
result = handDetect(body, oriImg)
self.assertEqual(result, expected_result)
def test_single_right_hand(self):
oriImg = np.zeros((100, 100, 3), dtype=np.uint8)
body = BodyResult([
None, None,
Keypoint(20, 20),
Keypoint(40, 30),
Keypoint(60, 40),
*([None] * 11),
Keypoint(20, 60),
Keypoint(40, 70),
Keypoint(60, 80)
], total_score=3, total_parts=0.5)
expected_result = [(49, 26, 33, False)]
result = handDetect(body, oriImg)
self.assertEqual(result, expected_result)
def test_multiple_hands(self):
body = BodyResult([
Keypoint(20, 20),
Keypoint(40, 30),
Keypoint(60, 40),
Keypoint(20, 60),
Keypoint(40, 70),
Keypoint(60, 80),
Keypoint(10, 10),
Keypoint(30, 20),
Keypoint(50, 30),
Keypoint(10, 50),
Keypoint(30, 60),
Keypoint(50, 70),
*([None] * 6),
], total_score=3, total_parts=0.5)
oriImg = np.zeros((100, 100, 3), dtype=np.uint8)
expected_result = [(0, 0, 100, True), (16, 43, 56, False)]
result = handDetect(body, oriImg)
self.assertEqual(result, expected_result)
if __name__ == '__main__':
unittest.main()
|