File size: 5,076 Bytes
b5ba7a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import torch

from functools import partial

from .modeling.mask_decoder_hq import MaskDecoderHQ
from .modeling.image_encoder import ImageEncoderViTHQ
from .modeling.tiny_vit import TinyViT
from segment_anything.modeling import PromptEncoder, Sam, TwoWayTransformer, MaskDecoder
from segment_anything import build_sam_vit_h, build_sam_vit_l, build_sam_vit_b


def build_sam_hq_vit_h(checkpoint=None):
    return _build_sam_hq(
        encoder_embed_dim=1280,
        encoder_depth=32,
        encoder_num_heads=16,
        encoder_global_attn_indexes=[7, 15, 23, 31],
        checkpoint=checkpoint,
    )


def build_sam_hq_vit_l(checkpoint=None):
    return _build_sam_hq(
        encoder_embed_dim=1024,
        encoder_depth=24,
        encoder_num_heads=16,
        encoder_global_attn_indexes=[5, 11, 17, 23],
        checkpoint=checkpoint,
    )


def build_sam_hq_vit_b(checkpoint=None):
    return _build_sam_hq(
        encoder_embed_dim=768,
        encoder_depth=12,
        encoder_num_heads=12,
        encoder_global_attn_indexes=[2, 5, 8, 11],
        checkpoint=checkpoint,
    )


def build_mobile_sam(checkpoint=None):
    return _build_mobile_sam(checkpoint)


sam_model_registry = {
    "sam_vit_h": build_sam_vit_h,
    "sam_vit_l": build_sam_vit_l,
    "sam_vit_b": build_sam_vit_b,
    "sam_hq_vit_h": build_sam_hq_vit_h,
    "sam_hq_vit_l": build_sam_hq_vit_l,
    "sam_hq_vit_b": build_sam_hq_vit_b,
    "mobile_sam": build_mobile_sam,
}


def _load_sam_checkpoint(sam: Sam, checkpoint=None):
    sam.eval()
    if checkpoint is not None:
        with open(checkpoint, "rb") as f:
            state_dict = torch.load(f)
        info = sam.load_state_dict(state_dict, strict=False)
        print(info)
    for _, p in sam.named_parameters():
        p.requires_grad = False
    return sam

def _build_sam_hq(
    encoder_embed_dim,
    encoder_depth,
    encoder_num_heads,
    encoder_global_attn_indexes,
    checkpoint=None,
):
    prompt_embed_dim = 256
    image_size = 1024
    vit_patch_size = 16
    image_embedding_size = image_size // vit_patch_size
    sam = Sam(
        image_encoder=ImageEncoderViTHQ(
            depth=encoder_depth,
            embed_dim=encoder_embed_dim,
            img_size=image_size,
            mlp_ratio=4,
            norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
            num_heads=encoder_num_heads,
            patch_size=vit_patch_size,
            qkv_bias=True,
            use_rel_pos=True,
            global_attn_indexes=encoder_global_attn_indexes,
            window_size=14,
            out_chans=prompt_embed_dim,
        ),
        prompt_encoder=PromptEncoder(
            embed_dim=prompt_embed_dim,
            image_embedding_size=(image_embedding_size, image_embedding_size),
            input_image_size=(image_size, image_size),
            mask_in_chans=16,
        ),
        mask_decoder=MaskDecoderHQ(
            num_multimask_outputs=3,
            transformer=TwoWayTransformer(
                depth=2,
                embedding_dim=prompt_embed_dim,
                mlp_dim=2048,
                num_heads=8,
            ),
            transformer_dim=prompt_embed_dim,
            iou_head_depth=3,
            iou_head_hidden_dim=256,
            vit_dim=encoder_embed_dim,
        ),
        pixel_mean=[123.675, 116.28, 103.53],
        pixel_std=[58.395, 57.12, 57.375],
    )
    return _load_sam_checkpoint(sam, checkpoint)


def _build_mobile_sam(checkpoint=None):
    prompt_embed_dim = 256
    image_size = 1024
    vit_patch_size = 16
    image_embedding_size = image_size // vit_patch_size
    mobile_sam = Sam(
        image_encoder=TinyViT(
            img_size=1024, in_chans=3, num_classes=1000,
            embed_dims=[64, 128, 160, 320],
            depths=[2, 2, 6, 2],
            num_heads=[2, 4, 5, 10],
            window_sizes=[7, 7, 14, 7],
            mlp_ratio=4.,
            drop_rate=0.,
            drop_path_rate=0.0,
            use_checkpoint=False,
            mbconv_expand_ratio=4.0,
            local_conv_size=3,
            layer_lr_decay=0.8
        ),
        prompt_encoder=PromptEncoder(
        embed_dim=prompt_embed_dim,
        image_embedding_size=(image_embedding_size, image_embedding_size),
        input_image_size=(image_size, image_size),
        mask_in_chans=16,
        ),
        mask_decoder=MaskDecoder(
                num_multimask_outputs=3,
                transformer=TwoWayTransformer(
                depth=2,
                embedding_dim=prompt_embed_dim,
                mlp_dim=2048,
                num_heads=8,
            ),
            transformer_dim=prompt_embed_dim,
            iou_head_depth=3,
            iou_head_hidden_dim=256,
        ),
        pixel_mean=[123.675, 116.28, 103.53],
        pixel_std=[58.395, 57.12, 57.375],
    )
    return _load_sam_checkpoint(mobile_sam, checkpoint)