File size: 9,854 Bytes
b5ba7a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import os
from fastapi import FastAPI, Body
from pydantic import BaseModel
from typing import Any, Optional, List
import gradio as gr
from PIL import Image
import numpy as np

from modules.api.api import encode_pil_to_base64, decode_base64_to_image
from scripts.sam import sam_predict, dino_predict, update_mask, cnet_seg, categorical_mask
from scripts.sam import sam_model_list


def decode_to_pil(image):
    if os.path.exists(image):
        return Image.open(image)
    elif type(image) is str:
        return decode_base64_to_image(image)
    elif type(image) is Image.Image:
        return image
    elif type(image) is np.ndarray:
        return Image.fromarray(image)
    else:
        Exception("Not an image")


def encode_to_base64(image):
    if type(image) is str:
        return image
    elif type(image) is Image.Image:
        return encode_pil_to_base64(image).decode()
    elif type(image) is np.ndarray:
        pil = Image.fromarray(image)
        return encode_pil_to_base64(pil).decode()
    else:
        Exception("Invalid type")


def sam_api(_: gr.Blocks, app: FastAPI):    
    @app.get("/sam/heartbeat")
    async def heartbeat():
        return {            
            "msg": "Success!"
        }

    @app.get("/sam/sam-model", description='Query available SAM model')
    async def api_sam_model() -> List[str]:
        return sam_model_list

    class SamPredictRequest(BaseModel):
        sam_model_name: str = "sam_vit_h_4b8939.pth"
        input_image: str
        sam_positive_points: List[List[float]] = []
        sam_negative_points: List[List[float]] = []
        dino_enabled: bool = False
        dino_model_name: Optional[str] = "GroundingDINO_SwinT_OGC (694MB)"
        dino_text_prompt: Optional[str] = None
        dino_box_threshold: Optional[float] = 0.3
        dino_preview_checkbox: bool = False
        dino_preview_boxes_selection: Optional[List[int]] = None

    @app.post("/sam/sam-predict")
    async def api_sam_predict(payload: SamPredictRequest = Body(...)) -> Any:
        print(f"SAM API /sam/sam-predict received request")
        payload.input_image = decode_to_pil(payload.input_image).convert('RGBA')
        sam_output_mask_gallery, sam_message = sam_predict(
            payload.sam_model_name,
            payload.input_image,
            payload.sam_positive_points,
            payload.sam_negative_points,
            payload.dino_enabled,
            payload.dino_model_name,
            payload.dino_text_prompt,
            payload.dino_box_threshold,
            payload.dino_preview_checkbox,
            payload.dino_preview_boxes_selection)
        print(f"SAM API /sam/sam-predict finished with message: {sam_message}")
        result = {
            "msg": sam_message,
        }
        if len(sam_output_mask_gallery) == 9:
            result["blended_images"] = list(map(encode_to_base64, sam_output_mask_gallery[:3]))
            result["masks"] = list(map(encode_to_base64, sam_output_mask_gallery[3:6]))
            result["masked_images"] = list(map(encode_to_base64, sam_output_mask_gallery[6:]))
        return result

    class DINOPredictRequest(BaseModel):
        input_image: str
        dino_model_name: str = "GroundingDINO_SwinT_OGC (694MB)"
        text_prompt: str
        box_threshold: float = 0.3

    @app.post("/sam/dino-predict")
    async def api_dino_predict(payload: DINOPredictRequest = Body(...)) -> Any:
        print(f"SAM API /sam/dino-predict received request")
        payload.input_image = decode_to_pil(payload.input_image)
        dino_output_img, _, dino_msg = dino_predict(
            payload.input_image,
            payload.dino_model_name,
            payload.text_prompt,
            payload.box_threshold)
        if "value" in dino_msg:
            dino_msg = dino_msg["value"]
        else:
            dino_msg = "Done"
        print(f"SAM API /sam/dino-predict finished with message: {dino_msg}")
        return {
            "msg": dino_msg,
            "image_with_box": encode_to_base64(dino_output_img) if dino_output_img is not None else None,
        }

    class DilateMaskRequest(BaseModel):
        input_image: str
        mask: str
        dilate_amount: int = 10

    @app.post("/sam/dilate-mask")
    async def api_dilate_mask(payload: DilateMaskRequest = Body(...)) -> Any:
        print(f"SAM API /sam/dilate-mask received request")
        payload.input_image = decode_to_pil(payload.input_image).convert("RGBA")
        payload.mask = decode_to_pil(payload.mask)
        dilate_result = list(map(encode_to_base64, update_mask(payload.mask, 0, payload.dilate_amount, payload.input_image)))
        print(f"SAM API /sam/dilate-mask finished")
        return {"blended_image": dilate_result[0], "mask": dilate_result[1], "masked_image": dilate_result[2]}

    
    class AutoSAMConfig(BaseModel):
        points_per_side: Optional[int] = 32
        points_per_batch: int = 64
        pred_iou_thresh: float = 0.88
        stability_score_thresh: float = 0.95
        stability_score_offset: float = 1.0
        box_nms_thresh: float = 0.7
        crop_n_layers: int = 0
        crop_nms_thresh: float = 0.7
        crop_overlap_ratio: float = 512 / 1500
        crop_n_points_downscale_factor: int = 1
        min_mask_region_area: int = 0

    class ControlNetSegRequest(BaseModel):
        sam_model_name: str = "sam_vit_h_4b8939.pth"
        input_image: str
        processor: str = "seg_ofade20k"
        processor_res: int = 512
        pixel_perfect: bool = False
        resize_mode: Optional[int] = 1 # 0: just resize, 1: crop and resize, 2: resize and fill
        target_W: Optional[int] = None
        target_H: Optional[int] = None

    @app.post("/sam/controlnet-seg")
    async def api_controlnet_seg(payload: ControlNetSegRequest = Body(...),
                                 autosam_conf: AutoSAMConfig = Body(...)) -> Any:
        print(f"SAM API /sam/controlnet-seg received request")
        payload.input_image = decode_to_pil(payload.input_image)
        cnet_seg_img, cnet_seg_msg = cnet_seg(
            payload.sam_model_name,
            payload.input_image,
            payload.processor,
            payload.processor_res,
            payload.pixel_perfect,
            payload.resize_mode,
            payload.target_W,
            payload.target_H,
            autosam_conf.points_per_side,
            autosam_conf.points_per_batch,
            autosam_conf.pred_iou_thresh,
            autosam_conf.stability_score_thresh,
            autosam_conf.stability_score_offset,
            autosam_conf.box_nms_thresh,
            autosam_conf.crop_n_layers,
            autosam_conf.crop_nms_thresh,
            autosam_conf.crop_overlap_ratio,
            autosam_conf.crop_n_points_downscale_factor,
            autosam_conf.min_mask_region_area)
        cnet_seg_img = list(map(encode_to_base64, cnet_seg_img))
        print(f"SAM API /sam/controlnet-seg finished with message {cnet_seg_msg}")
        result = {
            "msg": cnet_seg_msg,
        }
        if len(cnet_seg_img) == 3:
            result["blended_images"]        = cnet_seg_img[0]
            result["random_seg"]   = cnet_seg_img[1]
            result["edit_anything_control"] = cnet_seg_img[2]
        elif len(cnet_seg_img) == 4:
            result["sem_presam"]        = cnet_seg_img[0]
            result["sem_postsam"]       = cnet_seg_img[1]
            result["blended_presam"]    = cnet_seg_img[2]
            result["blended_postsam"]   = cnet_seg_img[3]
        return result
    
    class CategoryMaskRequest(BaseModel):
        sam_model_name: str = "sam_vit_h_4b8939.pth"
        processor: str = "seg_ofade20k"
        processor_res: int = 512
        pixel_perfect: bool = False
        resize_mode: Optional[int] = 1
        target_W: Optional[int] = None
        target_H: Optional[int] = None
        category: str
        input_image: str
    
    @app.post("/sam/category-mask")
    async def api_category_mask(payload: CategoryMaskRequest = Body(...),
                                autosam_conf: AutoSAMConfig = Body(...)) -> Any:
        print(f"SAM API /sam/category-mask received request")
        payload.input_image = decode_to_pil(payload.input_image)
        category_mask_img, category_mask_msg, resized_input_img = categorical_mask(
            payload.sam_model_name,
            payload.processor,
            payload.processor_res,
            payload.pixel_perfect,
            payload.resize_mode,
            payload.target_W,
            payload.target_H,
            payload.category,
            payload.input_image,
            autosam_conf.points_per_side,
            autosam_conf.points_per_batch,
            autosam_conf.pred_iou_thresh,
            autosam_conf.stability_score_thresh,
            autosam_conf.stability_score_offset,
            autosam_conf.box_nms_thresh,
            autosam_conf.crop_n_layers,
            autosam_conf.crop_nms_thresh,
            autosam_conf.crop_overlap_ratio,
            autosam_conf.crop_n_points_downscale_factor,
            autosam_conf.min_mask_region_area)
        category_mask_img = list(map(encode_to_base64, category_mask_img))
        print(f"SAM API /sam/category-mask finished with message {category_mask_msg}")
        result = {
            "msg": category_mask_msg,
        }
        if len(category_mask_img) == 3:
            result["blended_image"] = category_mask_img[0]
            result["mask"]          = category_mask_img[1]
            result["masked_image"]  = category_mask_img[2]
        if resized_input_img is not None:
            result["resized_input"] = encode_to_base64(resized_input_img)
        return result


try:
    import modules.script_callbacks as script_callbacks
    script_callbacks.on_app_started(sam_api)
except:
    print("SAM Web UI API failed to initialize")