File size: 7,450 Bytes
b5ba7a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os
import gc
import cv2
import copy
import torch
from collections import OrderedDict

from modules import scripts, shared
from modules.devices import device, torch_gc, cpu
import local_groundingdino


dino_model_cache = OrderedDict()
sam_extension_dir = scripts.basedir()
dino_model_dir = os.path.join(sam_extension_dir, "models/grounding-dino")
dino_model_list = ["GroundingDINO_SwinT_OGC (694MB)", "GroundingDINO_SwinB (938MB)"]
dino_model_info = {
    "GroundingDINO_SwinT_OGC (694MB)": {
        "checkpoint": "groundingdino_swint_ogc.pth",
        "config": os.path.join(dino_model_dir, "GroundingDINO_SwinT_OGC.py"),
        "url": "https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swint_ogc.pth",
    },
    "GroundingDINO_SwinB (938MB)": {
        "checkpoint": "groundingdino_swinb_cogcoor.pth",
        "config": os.path.join(dino_model_dir, "GroundingDINO_SwinB.cfg.py"),
        "url": "https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swinb_cogcoor.pth"
    },
}
dino_install_issue_text = "permanently switch to local groundingdino on Settings/Segment Anything or submit an issue to https://github.com/IDEA-Research/Grounded-Segment-Anything/issues."


def install_goundingdino():
    if shared.opts.data.get("sam_use_local_groundingdino", False):
        print("Using local groundingdino.")
        return False

    def verify_dll(install_local=True):
        try:
            from groundingdino import _C
            print("GroundingDINO dynamic library have been successfully built.")
            return True
        except Exception:
            import traceback
            traceback.print_exc()
            def run_pip_uninstall(command, desc=None):
                from launch import python, run
                default_command_live = (os.environ.get('WEBUI_LAUNCH_LIVE_OUTPUT') == "1")
                return run(f'"{python}" -m pip uninstall -y {command}', desc=f"Uninstalling {desc}", errdesc=f"Couldn't uninstall {desc}", live=default_command_live)
            if install_local:
                print(f"Failed to build dymanic library. Will uninstall GroundingDINO from pip and fall back to local groundingdino this time. Please {dino_install_issue_text}")
                run_pip_uninstall(
                    f"groundingdino",
                    f"sd-webui-segment-anything requirement: groundingdino")
            else:
                print(f"Failed to build dymanic library. Will uninstall GroundingDINO from pip and re-try installing from GitHub source code. Please {dino_install_issue_text}")
                run_pip_uninstall(
                    f"uninstall groundingdino",
                    f"sd-webui-segment-anything requirement: groundingdino")
            return False

    import launch
    if launch.is_installed("groundingdino"):
        print("Found GroundingDINO in pip. Verifying if dynamic library build success.")
        if verify_dll(install_local=False):
            return True
    try:
        launch.run_pip(
            f"install git+https://github.com/IDEA-Research/GroundingDINO",
            f"sd-webui-segment-anything requirement: groundingdino")
        print("GroundingDINO install success. Verifying if dynamic library build success.")
        return verify_dll()
    except Exception:
        import traceback
        traceback.print_exc()
        print(f"GroundingDINO install failed. Will fall back to local groundingdino this time. Please {dino_install_issue_text}")
        return False


def show_boxes(image_np, boxes, color=(255, 0, 0, 255), thickness=2, show_index=False):
    if boxes is None:
        return image_np

    image = copy.deepcopy(image_np)
    for idx, box in enumerate(boxes):
        x, y, w, h = box
        cv2.rectangle(image, (x, y), (w, h), color, thickness)
        if show_index:
            font = cv2.FONT_HERSHEY_SIMPLEX
            text = str(idx)
            textsize = cv2.getTextSize(text, font, 1, 2)[0]
            cv2.putText(image, text, (x, y+textsize[1]), font, 1, color, thickness)

    return image


def clear_dino_cache():
    dino_model_cache.clear()
    gc.collect()
    torch_gc()


def load_dino_model(dino_checkpoint, dino_install_success):
    print(f"Initializing GroundingDINO {dino_checkpoint}")
    if dino_checkpoint in dino_model_cache:
        dino = dino_model_cache[dino_checkpoint]
        if shared.cmd_opts.lowvram:
            dino.to(device=device)
    else:
        clear_dino_cache()
        if dino_install_success:
            from groundingdino.models import build_model
            from groundingdino.util.slconfig import SLConfig
            from groundingdino.util.utils import clean_state_dict
        else:
            from local_groundingdino.models import build_model
            from local_groundingdino.util.slconfig import SLConfig
            from local_groundingdino.util.utils import clean_state_dict
        args = SLConfig.fromfile(dino_model_info[dino_checkpoint]["config"])
        dino = build_model(args)
        checkpoint = torch.hub.load_state_dict_from_url(
            dino_model_info[dino_checkpoint]["url"], dino_model_dir)
        dino.load_state_dict(clean_state_dict(
            checkpoint['model']), strict=False)
        dino.to(device=device)
        dino_model_cache[dino_checkpoint] = dino
    dino.eval()
    return dino


def load_dino_image(image_pil, dino_install_success):
    if dino_install_success:
        import groundingdino.datasets.transforms as T
    else:
        from local_groundingdino.datasets import transforms as T
    transform = T.Compose(
        [
            T.RandomResize([800], max_size=1333),
            T.ToTensor(),
            T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ]
    )
    image, _ = transform(image_pil, None)  # 3, h, w
    return image


def get_grounding_output(model, image, caption, box_threshold):
    caption = caption.lower()
    caption = caption.strip()
    if not caption.endswith("."):
        caption = caption + "."
    image = image.to(device)
    with torch.no_grad():
        outputs = model(image[None], captions=[caption])
    if shared.cmd_opts.lowvram:
        model.to(cpu)
    logits = outputs["pred_logits"].sigmoid()[0]  # (nq, 256)
    boxes = outputs["pred_boxes"][0]  # (nq, 4)

    # filter output
    logits_filt = logits.clone()
    boxes_filt = boxes.clone()
    filt_mask = logits_filt.max(dim=1)[0] > box_threshold
    logits_filt = logits_filt[filt_mask]  # num_filt, 256
    boxes_filt = boxes_filt[filt_mask]  # num_filt, 4

    return boxes_filt.cpu()


def dino_predict_internal(input_image, dino_model_name, text_prompt, box_threshold):
    install_success = install_goundingdino()
    print("Running GroundingDINO Inference")
    dino_image = load_dino_image(input_image.convert("RGB"), install_success)
    dino_model = load_dino_model(dino_model_name, install_success)
    install_success = install_success or shared.opts.data.get("sam_use_local_groundingdino", False)

    boxes_filt = get_grounding_output(
        dino_model, dino_image, text_prompt, box_threshold
    )

    H, W = input_image.size[1], input_image.size[0]
    for i in range(boxes_filt.size(0)):
        boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
        boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
        boxes_filt[i][2:] += boxes_filt[i][:2]
    gc.collect()
    torch_gc()
    return boxes_filt, install_success