|
import os
|
|
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
|
|
|
|
import torch
|
|
|
|
from annotator.oneformer.detectron2.config import get_cfg
|
|
from annotator.oneformer.detectron2.projects.deeplab import add_deeplab_config
|
|
from annotator.oneformer.detectron2.data import MetadataCatalog
|
|
|
|
from annotator.oneformer.oneformer import (
|
|
add_oneformer_config,
|
|
add_common_config,
|
|
add_swin_config,
|
|
add_dinat_config,
|
|
)
|
|
|
|
from annotator.oneformer.oneformer.demo.defaults import DefaultPredictor
|
|
from annotator.oneformer.oneformer.demo.visualizer import Visualizer, ColorMode
|
|
|
|
|
|
def make_detectron2_model(config_path, ckpt_path):
|
|
cfg = get_cfg()
|
|
add_deeplab_config(cfg)
|
|
add_common_config(cfg)
|
|
add_swin_config(cfg)
|
|
add_oneformer_config(cfg)
|
|
add_dinat_config(cfg)
|
|
cfg.merge_from_file(config_path)
|
|
cfg.MODEL.WEIGHTS = ckpt_path
|
|
cfg.freeze()
|
|
metadata = MetadataCatalog.get(cfg.DATASETS.TEST_PANOPTIC[0] if len(cfg.DATASETS.TEST_PANOPTIC) else "__unused")
|
|
return DefaultPredictor(cfg), metadata
|
|
|
|
|
|
def semantic_run(img, predictor, metadata):
|
|
predictions = predictor(img[:, :, ::-1], "semantic")
|
|
visualizer_map = Visualizer(img, is_img=False, metadata=metadata, instance_mode=ColorMode.IMAGE)
|
|
out_map = visualizer_map.draw_sem_seg(predictions["sem_seg"].argmax(dim=0).cpu(), alpha=1, is_text=False).get_image()
|
|
return out_map
|
|
|