|
|
|
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import numpy as np
|
|
from torchvision.transforms import Normalize
|
|
|
|
|
|
def denormalize(x):
|
|
"""Reverses the imagenet normalization applied to the input.
|
|
|
|
Args:
|
|
x (torch.Tensor - shape(N,3,H,W)): input tensor
|
|
|
|
Returns:
|
|
torch.Tensor - shape(N,3,H,W): Denormalized input
|
|
"""
|
|
mean = torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(x.device)
|
|
std = torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(x.device)
|
|
return x * std + mean
|
|
|
|
def get_activation(name, bank):
|
|
def hook(model, input, output):
|
|
bank[name] = output
|
|
return hook
|
|
|
|
|
|
class Resize(object):
|
|
"""Resize sample to given size (width, height).
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
width,
|
|
height,
|
|
resize_target=True,
|
|
keep_aspect_ratio=False,
|
|
ensure_multiple_of=1,
|
|
resize_method="lower_bound",
|
|
):
|
|
"""Init.
|
|
Args:
|
|
width (int): desired output width
|
|
height (int): desired output height
|
|
resize_target (bool, optional):
|
|
True: Resize the full sample (image, mask, target).
|
|
False: Resize image only.
|
|
Defaults to True.
|
|
keep_aspect_ratio (bool, optional):
|
|
True: Keep the aspect ratio of the input sample.
|
|
Output sample might not have the given width and height, and
|
|
resize behaviour depends on the parameter 'resize_method'.
|
|
Defaults to False.
|
|
ensure_multiple_of (int, optional):
|
|
Output width and height is constrained to be multiple of this parameter.
|
|
Defaults to 1.
|
|
resize_method (str, optional):
|
|
"lower_bound": Output will be at least as large as the given size.
|
|
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
|
|
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
|
|
Defaults to "lower_bound".
|
|
"""
|
|
print("Params passed to Resize transform:")
|
|
print("\twidth: ", width)
|
|
print("\theight: ", height)
|
|
print("\tresize_target: ", resize_target)
|
|
print("\tkeep_aspect_ratio: ", keep_aspect_ratio)
|
|
print("\tensure_multiple_of: ", ensure_multiple_of)
|
|
print("\tresize_method: ", resize_method)
|
|
|
|
self.__width = width
|
|
self.__height = height
|
|
|
|
self.__keep_aspect_ratio = keep_aspect_ratio
|
|
self.__multiple_of = ensure_multiple_of
|
|
self.__resize_method = resize_method
|
|
|
|
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
|
|
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
|
|
|
if max_val is not None and y > max_val:
|
|
y = (np.floor(x / self.__multiple_of)
|
|
* self.__multiple_of).astype(int)
|
|
|
|
if y < min_val:
|
|
y = (np.ceil(x / self.__multiple_of)
|
|
* self.__multiple_of).astype(int)
|
|
|
|
return y
|
|
|
|
def get_size(self, width, height):
|
|
|
|
scale_height = self.__height / height
|
|
scale_width = self.__width / width
|
|
|
|
if self.__keep_aspect_ratio:
|
|
if self.__resize_method == "lower_bound":
|
|
|
|
if scale_width > scale_height:
|
|
|
|
scale_height = scale_width
|
|
else:
|
|
|
|
scale_width = scale_height
|
|
elif self.__resize_method == "upper_bound":
|
|
|
|
if scale_width < scale_height:
|
|
|
|
scale_height = scale_width
|
|
else:
|
|
|
|
scale_width = scale_height
|
|
elif self.__resize_method == "minimal":
|
|
|
|
if abs(1 - scale_width) < abs(1 - scale_height):
|
|
|
|
scale_height = scale_width
|
|
else:
|
|
|
|
scale_width = scale_height
|
|
else:
|
|
raise ValueError(
|
|
f"resize_method {self.__resize_method} not implemented"
|
|
)
|
|
|
|
if self.__resize_method == "lower_bound":
|
|
new_height = self.constrain_to_multiple_of(
|
|
scale_height * height, min_val=self.__height
|
|
)
|
|
new_width = self.constrain_to_multiple_of(
|
|
scale_width * width, min_val=self.__width
|
|
)
|
|
elif self.__resize_method == "upper_bound":
|
|
new_height = self.constrain_to_multiple_of(
|
|
scale_height * height, max_val=self.__height
|
|
)
|
|
new_width = self.constrain_to_multiple_of(
|
|
scale_width * width, max_val=self.__width
|
|
)
|
|
elif self.__resize_method == "minimal":
|
|
new_height = self.constrain_to_multiple_of(scale_height * height)
|
|
new_width = self.constrain_to_multiple_of(scale_width * width)
|
|
else:
|
|
raise ValueError(
|
|
f"resize_method {self.__resize_method} not implemented")
|
|
|
|
return (new_width, new_height)
|
|
|
|
def __call__(self, x):
|
|
width, height = self.get_size(*x.shape[-2:][::-1])
|
|
return nn.functional.interpolate(x, (height, width), mode='bilinear', align_corners=True)
|
|
|
|
class PrepForMidas(object):
|
|
def __init__(self, resize_mode="minimal", keep_aspect_ratio=True, img_size=384, do_resize=True):
|
|
if isinstance(img_size, int):
|
|
img_size = (img_size, img_size)
|
|
net_h, net_w = img_size
|
|
self.normalization = Normalize(
|
|
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
|
self.resizer = Resize(net_w, net_h, keep_aspect_ratio=keep_aspect_ratio, ensure_multiple_of=32, resize_method=resize_mode) \
|
|
if do_resize else nn.Identity()
|
|
|
|
def __call__(self, x):
|
|
return self.normalization(self.resizer(x))
|
|
|
|
|
|
class MidasCore(nn.Module):
|
|
def __init__(self, midas, trainable=False, fetch_features=True, layer_names=('out_conv', 'l4_rn', 'r4', 'r3', 'r2', 'r1'), freeze_bn=False, keep_aspect_ratio=True,
|
|
img_size=384, **kwargs):
|
|
"""Midas Base model used for multi-scale feature extraction.
|
|
|
|
Args:
|
|
midas (torch.nn.Module): Midas model.
|
|
trainable (bool, optional): Train midas model. Defaults to False.
|
|
fetch_features (bool, optional): Extract multi-scale features. Defaults to True.
|
|
layer_names (tuple, optional): Layers used for feature extraction. Order = (head output features, last layer features, ...decoder features). Defaults to ('out_conv', 'l4_rn', 'r4', 'r3', 'r2', 'r1').
|
|
freeze_bn (bool, optional): Freeze BatchNorm. Generally results in better finetuning performance. Defaults to False.
|
|
keep_aspect_ratio (bool, optional): Keep the aspect ratio of input images while resizing. Defaults to True.
|
|
img_size (int, tuple, optional): Input resolution. Defaults to 384.
|
|
"""
|
|
super().__init__()
|
|
self.core = midas
|
|
self.output_channels = None
|
|
self.core_out = {}
|
|
self.trainable = trainable
|
|
self.fetch_features = fetch_features
|
|
|
|
self.handles = []
|
|
|
|
self.layer_names = layer_names
|
|
|
|
self.set_trainable(trainable)
|
|
self.set_fetch_features(fetch_features)
|
|
|
|
self.prep = PrepForMidas(keep_aspect_ratio=keep_aspect_ratio,
|
|
img_size=img_size, do_resize=kwargs.get('do_resize', True))
|
|
|
|
if freeze_bn:
|
|
self.freeze_bn()
|
|
|
|
def set_trainable(self, trainable):
|
|
self.trainable = trainable
|
|
if trainable:
|
|
self.unfreeze()
|
|
else:
|
|
self.freeze()
|
|
return self
|
|
|
|
def set_fetch_features(self, fetch_features):
|
|
self.fetch_features = fetch_features
|
|
if fetch_features:
|
|
if len(self.handles) == 0:
|
|
self.attach_hooks(self.core)
|
|
else:
|
|
self.remove_hooks()
|
|
return self
|
|
|
|
def freeze(self):
|
|
for p in self.parameters():
|
|
p.requires_grad = False
|
|
self.trainable = False
|
|
return self
|
|
|
|
def unfreeze(self):
|
|
for p in self.parameters():
|
|
p.requires_grad = True
|
|
self.trainable = True
|
|
return self
|
|
|
|
def freeze_bn(self):
|
|
for m in self.modules():
|
|
if isinstance(m, nn.BatchNorm2d):
|
|
m.eval()
|
|
return self
|
|
|
|
def forward(self, x, denorm=False, return_rel_depth=False):
|
|
with torch.no_grad():
|
|
if denorm:
|
|
x = denormalize(x)
|
|
x = self.prep(x)
|
|
|
|
|
|
with torch.set_grad_enabled(self.trainable):
|
|
|
|
|
|
rel_depth = self.core(x)
|
|
|
|
if not self.fetch_features:
|
|
return rel_depth
|
|
out = [self.core_out[k] for k in self.layer_names]
|
|
|
|
if return_rel_depth:
|
|
return rel_depth, out
|
|
return out
|
|
|
|
def get_rel_pos_params(self):
|
|
for name, p in self.core.pretrained.named_parameters():
|
|
if "relative_position" in name:
|
|
yield p
|
|
|
|
def get_enc_params_except_rel_pos(self):
|
|
for name, p in self.core.pretrained.named_parameters():
|
|
if "relative_position" not in name:
|
|
yield p
|
|
|
|
def freeze_encoder(self, freeze_rel_pos=False):
|
|
if freeze_rel_pos:
|
|
for p in self.core.pretrained.parameters():
|
|
p.requires_grad = False
|
|
else:
|
|
for p in self.get_enc_params_except_rel_pos():
|
|
p.requires_grad = False
|
|
return self
|
|
|
|
def attach_hooks(self, midas):
|
|
if len(self.handles) > 0:
|
|
self.remove_hooks()
|
|
if "out_conv" in self.layer_names:
|
|
self.handles.append(list(midas.scratch.output_conv.children())[
|
|
3].register_forward_hook(get_activation("out_conv", self.core_out)))
|
|
if "r4" in self.layer_names:
|
|
self.handles.append(midas.scratch.refinenet4.register_forward_hook(
|
|
get_activation("r4", self.core_out)))
|
|
if "r3" in self.layer_names:
|
|
self.handles.append(midas.scratch.refinenet3.register_forward_hook(
|
|
get_activation("r3", self.core_out)))
|
|
if "r2" in self.layer_names:
|
|
self.handles.append(midas.scratch.refinenet2.register_forward_hook(
|
|
get_activation("r2", self.core_out)))
|
|
if "r1" in self.layer_names:
|
|
self.handles.append(midas.scratch.refinenet1.register_forward_hook(
|
|
get_activation("r1", self.core_out)))
|
|
if "l4_rn" in self.layer_names:
|
|
self.handles.append(midas.scratch.layer4_rn.register_forward_hook(
|
|
get_activation("l4_rn", self.core_out)))
|
|
|
|
return self
|
|
|
|
def remove_hooks(self):
|
|
for h in self.handles:
|
|
h.remove()
|
|
return self
|
|
|
|
def __del__(self):
|
|
self.remove_hooks()
|
|
|
|
def set_output_channels(self, model_type):
|
|
self.output_channels = MIDAS_SETTINGS[model_type]
|
|
|
|
@staticmethod
|
|
def build(midas_model_type="DPT_BEiT_L_384", train_midas=False, use_pretrained_midas=True, fetch_features=False, freeze_bn=True, force_keep_ar=False, force_reload=False, **kwargs):
|
|
if midas_model_type not in MIDAS_SETTINGS:
|
|
raise ValueError(
|
|
f"Invalid model type: {midas_model_type}. Must be one of {list(MIDAS_SETTINGS.keys())}")
|
|
if "img_size" in kwargs:
|
|
kwargs = MidasCore.parse_img_size(kwargs)
|
|
img_size = kwargs.pop("img_size", [384, 384])
|
|
print("img_size", img_size)
|
|
midas_path = os.path.join(os.path.dirname(__file__), 'midas_repo')
|
|
midas = torch.hub.load(midas_path, midas_model_type,
|
|
pretrained=use_pretrained_midas, force_reload=force_reload, source='local')
|
|
kwargs.update({'keep_aspect_ratio': force_keep_ar})
|
|
midas_core = MidasCore(midas, trainable=train_midas, fetch_features=fetch_features,
|
|
freeze_bn=freeze_bn, img_size=img_size, **kwargs)
|
|
midas_core.set_output_channels(midas_model_type)
|
|
return midas_core
|
|
|
|
@staticmethod
|
|
def build_from_config(config):
|
|
return MidasCore.build(**config)
|
|
|
|
@staticmethod
|
|
def parse_img_size(config):
|
|
assert 'img_size' in config
|
|
if isinstance(config['img_size'], str):
|
|
assert "," in config['img_size'], "img_size should be a string with comma separated img_size=H,W"
|
|
config['img_size'] = list(map(int, config['img_size'].split(",")))
|
|
assert len(
|
|
config['img_size']) == 2, "img_size should be a string with comma separated img_size=H,W"
|
|
elif isinstance(config['img_size'], int):
|
|
config['img_size'] = [config['img_size'], config['img_size']]
|
|
else:
|
|
assert isinstance(config['img_size'], list) and len(
|
|
config['img_size']) == 2, "img_size should be a list of H,W"
|
|
return config
|
|
|
|
|
|
nchannels2models = {
|
|
tuple([256]*5): ["DPT_BEiT_L_384", "DPT_BEiT_L_512", "DPT_BEiT_B_384", "DPT_SwinV2_L_384", "DPT_SwinV2_B_384", "DPT_SwinV2_T_256", "DPT_Large", "DPT_Hybrid"],
|
|
(512, 256, 128, 64, 64): ["MiDaS_small"]
|
|
}
|
|
|
|
|
|
MIDAS_SETTINGS = {m: k for k, v in nchannels2models.items()
|
|
for m in v
|
|
}
|
|
|