|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Miscellaneous utility functions."""
|
|
|
|
from scipy import ndimage
|
|
|
|
import base64
|
|
import math
|
|
import re
|
|
from io import BytesIO
|
|
|
|
import matplotlib
|
|
import matplotlib.cm
|
|
import numpy as np
|
|
import requests
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.nn
|
|
import torch.nn as nn
|
|
import torch.utils.data.distributed
|
|
from PIL import Image
|
|
from torchvision.transforms import ToTensor
|
|
|
|
|
|
class RunningAverage:
|
|
def __init__(self):
|
|
self.avg = 0
|
|
self.count = 0
|
|
|
|
def append(self, value):
|
|
self.avg = (value + self.count * self.avg) / (self.count + 1)
|
|
self.count += 1
|
|
|
|
def get_value(self):
|
|
return self.avg
|
|
|
|
|
|
def denormalize(x):
|
|
"""Reverses the imagenet normalization applied to the input.
|
|
|
|
Args:
|
|
x (torch.Tensor - shape(N,3,H,W)): input tensor
|
|
|
|
Returns:
|
|
torch.Tensor - shape(N,3,H,W): Denormalized input
|
|
"""
|
|
mean = torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(x.device)
|
|
std = torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(x.device)
|
|
return x * std + mean
|
|
|
|
|
|
class RunningAverageDict:
|
|
"""A dictionary of running averages."""
|
|
def __init__(self):
|
|
self._dict = None
|
|
|
|
def update(self, new_dict):
|
|
if new_dict is None:
|
|
return
|
|
|
|
if self._dict is None:
|
|
self._dict = dict()
|
|
for key, value in new_dict.items():
|
|
self._dict[key] = RunningAverage()
|
|
|
|
for key, value in new_dict.items():
|
|
self._dict[key].append(value)
|
|
|
|
def get_value(self):
|
|
if self._dict is None:
|
|
return None
|
|
return {key: value.get_value() for key, value in self._dict.items()}
|
|
|
|
|
|
def colorize(value, vmin=None, vmax=None, cmap='gray_r', invalid_val=-99, invalid_mask=None, background_color=(128, 128, 128, 255), gamma_corrected=False, value_transform=None):
|
|
"""Converts a depth map to a color image.
|
|
|
|
Args:
|
|
value (torch.Tensor, numpy.ndarry): Input depth map. Shape: (H, W) or (1, H, W) or (1, 1, H, W). All singular dimensions are squeezed
|
|
vmin (float, optional): vmin-valued entries are mapped to start color of cmap. If None, value.min() is used. Defaults to None.
|
|
vmax (float, optional): vmax-valued entries are mapped to end color of cmap. If None, value.max() is used. Defaults to None.
|
|
cmap (str, optional): matplotlib colormap to use. Defaults to 'magma_r'.
|
|
invalid_val (int, optional): Specifies value of invalid pixels that should be colored as 'background_color'. Defaults to -99.
|
|
invalid_mask (numpy.ndarray, optional): Boolean mask for invalid regions. Defaults to None.
|
|
background_color (tuple[int], optional): 4-tuple RGB color to give to invalid pixels. Defaults to (128, 128, 128, 255).
|
|
gamma_corrected (bool, optional): Apply gamma correction to colored image. Defaults to False.
|
|
value_transform (Callable, optional): Apply transform function to valid pixels before coloring. Defaults to None.
|
|
|
|
Returns:
|
|
numpy.ndarray, dtype - uint8: Colored depth map. Shape: (H, W, 4)
|
|
"""
|
|
if isinstance(value, torch.Tensor):
|
|
value = value.detach().cpu().numpy()
|
|
|
|
value = value.squeeze()
|
|
if invalid_mask is None:
|
|
invalid_mask = value == invalid_val
|
|
mask = np.logical_not(invalid_mask)
|
|
|
|
|
|
vmin = np.percentile(value[mask],2) if vmin is None else vmin
|
|
vmax = np.percentile(value[mask],85) if vmax is None else vmax
|
|
if vmin != vmax:
|
|
value = (value - vmin) / (vmax - vmin)
|
|
else:
|
|
|
|
value = value * 0.
|
|
|
|
|
|
|
|
|
|
value[invalid_mask] = np.nan
|
|
cmapper = matplotlib.cm.get_cmap(cmap)
|
|
if value_transform:
|
|
value = value_transform(value)
|
|
|
|
value = cmapper(value, bytes=True)
|
|
|
|
|
|
img = value[...]
|
|
img[invalid_mask] = background_color
|
|
|
|
|
|
if gamma_corrected:
|
|
|
|
img = img / 255
|
|
img = np.power(img, 2.2)
|
|
img = img * 255
|
|
img = img.astype(np.uint8)
|
|
return img
|
|
|
|
|
|
def count_parameters(model, include_all=False):
|
|
return sum(p.numel() for p in model.parameters() if p.requires_grad or include_all)
|
|
|
|
|
|
def compute_errors(gt, pred):
|
|
"""Compute metrics for 'pred' compared to 'gt'
|
|
|
|
Args:
|
|
gt (numpy.ndarray): Ground truth values
|
|
pred (numpy.ndarray): Predicted values
|
|
|
|
gt.shape should be equal to pred.shape
|
|
|
|
Returns:
|
|
dict: Dictionary containing the following metrics:
|
|
'a1': Delta1 accuracy: Fraction of pixels that are within a scale factor of 1.25
|
|
'a2': Delta2 accuracy: Fraction of pixels that are within a scale factor of 1.25^2
|
|
'a3': Delta3 accuracy: Fraction of pixels that are within a scale factor of 1.25^3
|
|
'abs_rel': Absolute relative error
|
|
'rmse': Root mean squared error
|
|
'log_10': Absolute log10 error
|
|
'sq_rel': Squared relative error
|
|
'rmse_log': Root mean squared error on the log scale
|
|
'silog': Scale invariant log error
|
|
"""
|
|
thresh = np.maximum((gt / pred), (pred / gt))
|
|
a1 = (thresh < 1.25).mean()
|
|
a2 = (thresh < 1.25 ** 2).mean()
|
|
a3 = (thresh < 1.25 ** 3).mean()
|
|
|
|
abs_rel = np.mean(np.abs(gt - pred) / gt)
|
|
sq_rel = np.mean(((gt - pred) ** 2) / gt)
|
|
|
|
rmse = (gt - pred) ** 2
|
|
rmse = np.sqrt(rmse.mean())
|
|
|
|
rmse_log = (np.log(gt) - np.log(pred)) ** 2
|
|
rmse_log = np.sqrt(rmse_log.mean())
|
|
|
|
err = np.log(pred) - np.log(gt)
|
|
silog = np.sqrt(np.mean(err ** 2) - np.mean(err) ** 2) * 100
|
|
|
|
log_10 = (np.abs(np.log10(gt) - np.log10(pred))).mean()
|
|
return dict(a1=a1, a2=a2, a3=a3, abs_rel=abs_rel, rmse=rmse, log_10=log_10, rmse_log=rmse_log,
|
|
silog=silog, sq_rel=sq_rel)
|
|
|
|
|
|
def compute_metrics(gt, pred, interpolate=True, garg_crop=False, eigen_crop=True, dataset='nyu', min_depth_eval=0.1, max_depth_eval=10, **kwargs):
|
|
"""Compute metrics of predicted depth maps. Applies cropping and masking as necessary or specified via arguments. Refer to compute_errors for more details on metrics.
|
|
"""
|
|
if 'config' in kwargs:
|
|
config = kwargs['config']
|
|
garg_crop = config.garg_crop
|
|
eigen_crop = config.eigen_crop
|
|
min_depth_eval = config.min_depth_eval
|
|
max_depth_eval = config.max_depth_eval
|
|
|
|
if gt.shape[-2:] != pred.shape[-2:] and interpolate:
|
|
pred = nn.functional.interpolate(
|
|
pred, gt.shape[-2:], mode='bilinear', align_corners=True)
|
|
|
|
pred = pred.squeeze().cpu().numpy()
|
|
pred[pred < min_depth_eval] = min_depth_eval
|
|
pred[pred > max_depth_eval] = max_depth_eval
|
|
pred[np.isinf(pred)] = max_depth_eval
|
|
pred[np.isnan(pred)] = min_depth_eval
|
|
|
|
gt_depth = gt.squeeze().cpu().numpy()
|
|
valid_mask = np.logical_and(
|
|
gt_depth > min_depth_eval, gt_depth < max_depth_eval)
|
|
|
|
if garg_crop or eigen_crop:
|
|
gt_height, gt_width = gt_depth.shape
|
|
eval_mask = np.zeros(valid_mask.shape)
|
|
|
|
if garg_crop:
|
|
eval_mask[int(0.40810811 * gt_height):int(0.99189189 * gt_height),
|
|
int(0.03594771 * gt_width):int(0.96405229 * gt_width)] = 1
|
|
|
|
elif eigen_crop:
|
|
|
|
if dataset == 'kitti':
|
|
eval_mask[int(0.3324324 * gt_height):int(0.91351351 * gt_height),
|
|
int(0.0359477 * gt_width):int(0.96405229 * gt_width)] = 1
|
|
else:
|
|
|
|
eval_mask[45:471, 41:601] = 1
|
|
else:
|
|
eval_mask = np.ones(valid_mask.shape)
|
|
valid_mask = np.logical_and(valid_mask, eval_mask)
|
|
return compute_errors(gt_depth[valid_mask], pred[valid_mask])
|
|
|
|
|
|
|
|
|
|
|
|
def parallelize(config, model, find_unused_parameters=True):
|
|
|
|
if config.gpu is not None:
|
|
torch.cuda.set_device(config.gpu)
|
|
model = model.cuda(config.gpu)
|
|
|
|
config.multigpu = False
|
|
if config.distributed:
|
|
|
|
config.multigpu = True
|
|
config.rank = config.rank * config.ngpus_per_node + config.gpu
|
|
dist.init_process_group(backend=config.dist_backend, init_method=config.dist_url,
|
|
world_size=config.world_size, rank=config.rank)
|
|
config.batch_size = int(config.batch_size / config.ngpus_per_node)
|
|
|
|
config.workers = int(
|
|
(config.num_workers + config.ngpus_per_node - 1) / config.ngpus_per_node)
|
|
print("Device", config.gpu, "Rank", config.rank, "batch size",
|
|
config.batch_size, "Workers", config.workers)
|
|
torch.cuda.set_device(config.gpu)
|
|
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
|
|
model = model.cuda(config.gpu)
|
|
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[config.gpu], output_device=config.gpu,
|
|
find_unused_parameters=find_unused_parameters)
|
|
|
|
elif config.gpu is None:
|
|
|
|
config.multigpu = True
|
|
model = model.cuda()
|
|
model = torch.nn.DataParallel(model)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class colors:
|
|
'''Colors class:
|
|
Reset all colors with colors.reset
|
|
Two subclasses fg for foreground and bg for background.
|
|
Use as colors.subclass.colorname.
|
|
i.e. colors.fg.red or colors.bg.green
|
|
Also, the generic bold, disable, underline, reverse, strikethrough,
|
|
and invisible work with the main class
|
|
i.e. colors.bold
|
|
'''
|
|
reset = '\033[0m'
|
|
bold = '\033[01m'
|
|
disable = '\033[02m'
|
|
underline = '\033[04m'
|
|
reverse = '\033[07m'
|
|
strikethrough = '\033[09m'
|
|
invisible = '\033[08m'
|
|
|
|
class fg:
|
|
black = '\033[30m'
|
|
red = '\033[31m'
|
|
green = '\033[32m'
|
|
orange = '\033[33m'
|
|
blue = '\033[34m'
|
|
purple = '\033[35m'
|
|
cyan = '\033[36m'
|
|
lightgrey = '\033[37m'
|
|
darkgrey = '\033[90m'
|
|
lightred = '\033[91m'
|
|
lightgreen = '\033[92m'
|
|
yellow = '\033[93m'
|
|
lightblue = '\033[94m'
|
|
pink = '\033[95m'
|
|
lightcyan = '\033[96m'
|
|
|
|
class bg:
|
|
black = '\033[40m'
|
|
red = '\033[41m'
|
|
green = '\033[42m'
|
|
orange = '\033[43m'
|
|
blue = '\033[44m'
|
|
purple = '\033[45m'
|
|
cyan = '\033[46m'
|
|
lightgrey = '\033[47m'
|
|
|
|
|
|
def printc(text, color):
|
|
print(f"{color}{text}{colors.reset}")
|
|
|
|
|
|
|
|
def get_image_from_url(url):
|
|
response = requests.get(url)
|
|
img = Image.open(BytesIO(response.content)).convert("RGB")
|
|
return img
|
|
|
|
def url_to_torch(url, size=(384, 384)):
|
|
img = get_image_from_url(url)
|
|
img = img.resize(size, Image.ANTIALIAS)
|
|
img = torch.from_numpy(np.asarray(img)).float()
|
|
img = img.permute(2, 0, 1)
|
|
img.div_(255)
|
|
return img
|
|
|
|
def pil_to_batched_tensor(img):
|
|
return ToTensor()(img).unsqueeze(0)
|
|
|
|
def save_raw_16bit(depth, fpath="raw.png"):
|
|
if isinstance(depth, torch.Tensor):
|
|
depth = depth.squeeze().cpu().numpy()
|
|
|
|
assert isinstance(depth, np.ndarray), "Depth must be a torch tensor or numpy array"
|
|
assert depth.ndim == 2, "Depth must be 2D"
|
|
depth = depth * 256
|
|
depth = depth.astype(np.uint16)
|
|
depth = Image.fromarray(depth)
|
|
depth.save(fpath)
|
|
print("Saved raw depth to", fpath) |