|
import re
|
|
import numpy as np
|
|
|
|
from modules import scripts, shared
|
|
|
|
try:
|
|
from scripts.global_state import update_cn_models, cn_models_names, cn_preprocessor_modules
|
|
from scripts.external_code import ResizeMode, ControlMode
|
|
|
|
except (ImportError, NameError):
|
|
import_error = True
|
|
else:
|
|
import_error = False
|
|
|
|
DEBUG_MODE = False
|
|
|
|
|
|
def debug_info(func):
|
|
def debug_info_(*args, **kwargs):
|
|
if DEBUG_MODE:
|
|
print(f"Debug info: {func.__name__}, {args}")
|
|
return func(*args, **kwargs)
|
|
return debug_info_
|
|
|
|
|
|
def find_dict(dict_list, keyword, search_key="name", stop=False):
|
|
result = next((d for d in dict_list if d[search_key] == keyword), None)
|
|
if result or not stop:
|
|
return result
|
|
else:
|
|
raise ValueError(f"Dictionary with value '{keyword}' in key '{search_key}' not found.")
|
|
|
|
|
|
def flatten(lst):
|
|
result = []
|
|
for element in lst:
|
|
if isinstance(element, list):
|
|
result.extend(flatten(element))
|
|
else:
|
|
result.append(element)
|
|
return result
|
|
|
|
|
|
def is_all_included(target_list, check_list, allow_blank=False, stop=False):
|
|
for element in flatten(target_list):
|
|
if allow_blank and str(element) in ["None", ""]:
|
|
continue
|
|
elif element not in check_list:
|
|
if not stop:
|
|
return False
|
|
else:
|
|
raise ValueError(f"'{element}' is not included in check list.")
|
|
return True
|
|
|
|
|
|
class ListParser():
|
|
"""This class restores a broken list caused by the following process
|
|
in the xyz_grid module.
|
|
-> valslist = [x.strip() for x in chain.from_iterable(
|
|
csv.reader(StringIO(vals)))]
|
|
It also performs type conversion,
|
|
adjusts the number of elements in the list, and other operations.
|
|
|
|
This class directly modifies the received list.
|
|
"""
|
|
numeric_pattern = {
|
|
int: {
|
|
"range": r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\(([+-]\d+)\s*\))?\s*",
|
|
"count": r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\[(\d+)\s*\])?\s*"
|
|
},
|
|
float: {
|
|
"range": r"\s*([+-]?\s*\d+(?:\.\d*)?)\s*-\s*([+-]?\s*\d+(?:\.\d*)?)(?:\s*\(([+-]\d+(?:\.\d*)?)\s*\))?\s*",
|
|
"count": r"\s*([+-]?\s*\d+(?:\.\d*)?)\s*-\s*([+-]?\s*\d+(?:\.\d*)?)(?:\s*\[(\d+(?:\.\d*)?)\s*\])?\s*"
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, my_list, converter=None, allow_blank=True, exclude_list=None, run=True):
|
|
self.my_list = my_list
|
|
self.converter = converter
|
|
self.allow_blank = allow_blank
|
|
self.exclude_list = exclude_list
|
|
self.re_bracket_start = None
|
|
self.re_bracket_start_precheck = None
|
|
self.re_bracket_end = None
|
|
self.re_bracket_end_precheck = None
|
|
self.re_range = None
|
|
self.re_count = None
|
|
self.compile_regex()
|
|
if run:
|
|
self.auto_normalize()
|
|
|
|
def compile_regex(self):
|
|
exclude_pattern = "|".join(self.exclude_list) if self.exclude_list else None
|
|
if exclude_pattern is None:
|
|
self.re_bracket_start = re.compile(r"^\[")
|
|
self.re_bracket_end = re.compile(r"\]$")
|
|
else:
|
|
self.re_bracket_start = re.compile(fr"^\[(?!(?:{exclude_pattern})\])")
|
|
self.re_bracket_end = re.compile(fr"(?<!\[(?:{exclude_pattern}))\]$")
|
|
|
|
if self.converter not in self.numeric_pattern:
|
|
return self
|
|
|
|
self.re_range = re.compile(self.numeric_pattern[self.converter]["range"])
|
|
self.re_count = re.compile(self.numeric_pattern[self.converter]["count"])
|
|
self.re_bracket_start_precheck = None
|
|
self.re_bracket_end_precheck = self.re_count
|
|
return self
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def auto_normalize(self):
|
|
if not self.has_list_notation():
|
|
self.numeric_range_parser()
|
|
self.type_convert()
|
|
return self
|
|
else:
|
|
self.fix_structure()
|
|
self.numeric_range_parser()
|
|
self.type_convert()
|
|
self.fill_to_longest()
|
|
return self
|
|
|
|
def has_list_notation(self):
|
|
return any(self._search_bracket(s) for s in self.my_list)
|
|
|
|
def numeric_range_parser(self, my_list=None, depth=0):
|
|
if self.converter not in self.numeric_pattern:
|
|
return self
|
|
|
|
my_list = self.my_list if my_list is None else my_list
|
|
result = []
|
|
is_matched = False
|
|
for s in my_list:
|
|
if isinstance(s, list):
|
|
result.extend(self.numeric_range_parser(s, depth+1))
|
|
continue
|
|
|
|
match = self._numeric_range_to_list(s)
|
|
if s != match:
|
|
is_matched = True
|
|
result.extend(match if not depth else [match])
|
|
continue
|
|
else:
|
|
result.append(s)
|
|
continue
|
|
|
|
if depth:
|
|
return self._transpose(result) if is_matched else [result]
|
|
else:
|
|
my_list[:] = result
|
|
return self
|
|
|
|
def type_convert(self, my_list=None):
|
|
my_list = self.my_list if my_list is None else my_list
|
|
for i, s in enumerate(my_list):
|
|
if isinstance(s, list):
|
|
self.type_convert(s)
|
|
elif self.allow_blank and (str(s) in ["None", ""]):
|
|
my_list[i] = None
|
|
elif self.converter:
|
|
my_list[i] = self.converter(s)
|
|
else:
|
|
my_list[i] = s
|
|
return self
|
|
|
|
def fix_structure(self):
|
|
def is_same_length(list1, list2):
|
|
return len(list1) == len(list2)
|
|
|
|
start_indices, end_indices = [], []
|
|
for i, s in enumerate(self.my_list):
|
|
if is_same_length(start_indices, end_indices):
|
|
replace_string = self._search_bracket(s, "[", replace="")
|
|
if s != replace_string:
|
|
s = replace_string
|
|
start_indices.append(i)
|
|
if not is_same_length(start_indices, end_indices):
|
|
replace_string = self._search_bracket(s, "]", replace="")
|
|
if s != replace_string:
|
|
s = replace_string
|
|
end_indices.append(i + 1)
|
|
self.my_list[i] = s
|
|
if not is_same_length(start_indices, end_indices):
|
|
raise ValueError(f"Lengths of {start_indices} and {end_indices} are different.")
|
|
|
|
for i, j in zip(reversed(start_indices), reversed(end_indices)):
|
|
self.my_list[i:j] = [self.my_list[i:j]]
|
|
return self
|
|
|
|
def fill_to_longest(self, my_list=None, value=None, index=None):
|
|
my_list = self.my_list if my_list is None else my_list
|
|
if not self.sublist_exists(my_list):
|
|
return self
|
|
max_length = max(len(sub_list) for sub_list in my_list if isinstance(sub_list, list))
|
|
for i, sub_list in enumerate(my_list):
|
|
if isinstance(sub_list, list):
|
|
fill_value = value if index is None else sub_list[index]
|
|
my_list[i] = sub_list + [fill_value] * (max_length-len(sub_list))
|
|
return self
|
|
|
|
def sublist_exists(self, my_list=None):
|
|
my_list = self.my_list if my_list is None else my_list
|
|
return any(isinstance(item, list) for item in my_list)
|
|
|
|
def all_sublists(self, my_list=None):
|
|
my_list = self.my_list if my_list is None else my_list
|
|
return all(isinstance(item, list) for item in my_list)
|
|
|
|
def get_list(self):
|
|
return self.my_list
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _search_bracket(self, string, bracket="[", replace=None):
|
|
if bracket == "[":
|
|
pattern = self.re_bracket_start
|
|
precheck = self.re_bracket_start_precheck
|
|
elif bracket == "]":
|
|
pattern = self.re_bracket_end
|
|
precheck = self.re_bracket_end_precheck
|
|
else:
|
|
raise ValueError(f"Invalid argument provided. (bracket: {bracket})")
|
|
|
|
if precheck and precheck.fullmatch(string):
|
|
return None if replace is None else string
|
|
elif replace is None:
|
|
return pattern.search(string)
|
|
else:
|
|
return pattern.sub(replace, string)
|
|
|
|
def _numeric_range_to_list(self, string):
|
|
match = self.re_range.fullmatch(string)
|
|
if match is not None:
|
|
if self.converter == int:
|
|
start = int(match.group(1))
|
|
end = int(match.group(2)) + 1
|
|
step = int(match.group(3)) if match.group(3) is not None else 1
|
|
return list(range(start, end, step))
|
|
else:
|
|
start = float(match.group(1))
|
|
end = float(match.group(2))
|
|
step = float(match.group(3)) if match.group(3) is not None else 1
|
|
return np.arange(start, end + step, step).tolist()
|
|
|
|
match = self.re_count.fullmatch(string)
|
|
if match is not None:
|
|
if self.converter == int:
|
|
start = int(match.group(1))
|
|
end = int(match.group(2))
|
|
num = int(match.group(3)) if match.group(3) is not None else 1
|
|
return [int(x) for x in np.linspace(start=start, stop=end, num=num).tolist()]
|
|
else:
|
|
start = float(match.group(1))
|
|
end = float(match.group(2))
|
|
num = int(match.group(3)) if match.group(3) is not None else 1
|
|
return np.linspace(start=start, stop=end, num=num).tolist()
|
|
return string
|
|
|
|
def _transpose(self, my_list=None):
|
|
my_list = self.my_list if my_list is None else my_list
|
|
my_list = [item if isinstance(item, list) else [item] for item in my_list]
|
|
self.fill_to_longest(my_list, index=-1)
|
|
return np.array(my_list, dtype=object).T.tolist()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def find_module(module_names):
|
|
if isinstance(module_names, str):
|
|
module_names = [s.strip() for s in module_names.split(",")]
|
|
for data in scripts.scripts_data:
|
|
if data.script_class.__module__ in module_names and hasattr(data, "module"):
|
|
return data.module
|
|
return None
|
|
|
|
|
|
def add_axis_options(xyz_grid):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def identity(x):
|
|
return x
|
|
|
|
def enable_script_control():
|
|
shared.opts.data["control_net_allow_script_control"] = True
|
|
|
|
def apply_field(field):
|
|
@debug_info
|
|
def apply_field_(p, x, xs):
|
|
enable_script_control()
|
|
setattr(p, field, x)
|
|
|
|
return apply_field_
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def confirm(func_or_str):
|
|
@debug_info
|
|
def confirm_(p, xs):
|
|
if callable(func_or_str):
|
|
ListParser(xs, func_or_str, allow_blank=True)
|
|
return
|
|
|
|
elif isinstance(func_or_str, str):
|
|
valid_data = find_dict(validation_data, func_or_str, stop=True)
|
|
converter = valid_data["type"]
|
|
exclude_list = valid_data["exclude"]() if valid_data["exclude"] else None
|
|
check_list = valid_data["check"]()
|
|
|
|
ListParser(xs, converter, allow_blank=True, exclude_list=exclude_list)
|
|
is_all_included(xs, check_list, allow_blank=True, stop=True)
|
|
return
|
|
|
|
else:
|
|
raise TypeError(f"Argument must be callable or str, not {type(func_or_str).__name__}.")
|
|
|
|
return confirm_
|
|
|
|
def bool_(string):
|
|
string = str(string)
|
|
if string in ["None", ""]:
|
|
return None
|
|
elif string.lower() in ["true", "1"]:
|
|
return True
|
|
elif string.lower() in ["false", "0"]:
|
|
return False
|
|
else:
|
|
raise ValueError(f"Could not convert string to boolean: {string}")
|
|
|
|
def choices_bool():
|
|
return ["False", "True"]
|
|
|
|
def choices_model():
|
|
update_cn_models()
|
|
return list(cn_models_names.values())
|
|
|
|
def choices_control_mode():
|
|
return [e.value for e in ControlMode]
|
|
|
|
def choices_resize_mode():
|
|
return [e.value for e in ResizeMode]
|
|
|
|
def choices_preprocessor():
|
|
return list(cn_preprocessor_modules)
|
|
|
|
def make_excluded_list():
|
|
pattern = re.compile(r"\[(\w+)\]")
|
|
return [match.group(1) for s in choices_model()
|
|
for match in pattern.finditer(s)]
|
|
|
|
validation_data = [
|
|
{"name": "model", "type": str, "check": choices_model, "exclude": make_excluded_list},
|
|
{"name": "control_mode", "type": str, "check": choices_control_mode, "exclude": None},
|
|
{"name": "resize_mode", "type": str, "check": choices_resize_mode, "exclude": None},
|
|
{"name": "preprocessor", "type": str, "check": choices_preprocessor, "exclude": None},
|
|
]
|
|
|
|
extra_axis_options = [
|
|
xyz_grid.AxisOption("[ControlNet] Enabled", identity, apply_field("control_net_enabled"), confirm=confirm(bool_), choices=choices_bool),
|
|
xyz_grid.AxisOption("[ControlNet] Model", identity, apply_field("control_net_model"), confirm=confirm("model"), choices=choices_model, cost=0.9),
|
|
xyz_grid.AxisOption("[ControlNet] Weight", identity, apply_field("control_net_weight"), confirm=confirm(float)),
|
|
xyz_grid.AxisOption("[ControlNet] Guidance Start", identity, apply_field("control_net_guidance_start"), confirm=confirm(float)),
|
|
xyz_grid.AxisOption("[ControlNet] Guidance End", identity, apply_field("control_net_guidance_end"), confirm=confirm(float)),
|
|
xyz_grid.AxisOption("[ControlNet] Control Mode", identity, apply_field("control_net_control_mode"), confirm=confirm("control_mode"), choices=choices_control_mode),
|
|
xyz_grid.AxisOption("[ControlNet] Resize Mode", identity, apply_field("control_net_resize_mode"), confirm=confirm("resize_mode"), choices=choices_resize_mode),
|
|
xyz_grid.AxisOption("[ControlNet] Preprocessor", identity, apply_field("control_net_module"), confirm=confirm("preprocessor"), choices=choices_preprocessor),
|
|
xyz_grid.AxisOption("[ControlNet] Pre Resolution", identity, apply_field("control_net_pres"), confirm=confirm(int)),
|
|
xyz_grid.AxisOption("[ControlNet] Pre Threshold A", identity, apply_field("control_net_pthr_a"), confirm=confirm(float)),
|
|
xyz_grid.AxisOption("[ControlNet] Pre Threshold B", identity, apply_field("control_net_pthr_b"), confirm=confirm(float)),
|
|
]
|
|
|
|
xyz_grid.axis_options.extend(extra_axis_options)
|
|
|
|
|
|
def run():
|
|
xyz_grid = find_module("xyz_grid.py, xy_grid.py")
|
|
if xyz_grid:
|
|
add_axis_options(xyz_grid)
|
|
|
|
|
|
if not import_error:
|
|
run()
|
|
|