|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
|
|
from typing import List, Optional |
|
|
|
from segment_anything import SamAutomaticMaskGenerator |
|
from segment_anything.utils.amg import build_all_layer_point_grids |
|
from .predictor import SamPredictorHQ |
|
|
|
|
|
class SamAutomaticMaskGeneratorHQ(SamAutomaticMaskGenerator): |
|
def __init__( |
|
self, |
|
model: SamPredictorHQ, |
|
points_per_side: Optional[int] = 32, |
|
points_per_batch: int = 64, |
|
pred_iou_thresh: float = 0.88, |
|
stability_score_thresh: float = 0.95, |
|
stability_score_offset: float = 1.0, |
|
box_nms_thresh: float = 0.7, |
|
crop_n_layers: int = 0, |
|
crop_nms_thresh: float = 0.7, |
|
crop_overlap_ratio: float = 512 / 1500, |
|
crop_n_points_downscale_factor: int = 1, |
|
point_grids: Optional[List[np.ndarray]] = None, |
|
min_mask_region_area: int = 0, |
|
output_mode: str = "binary_mask", |
|
) -> None: |
|
""" |
|
Using a SAM model, generates masks for the entire image. |
|
Generates a grid of point prompts over the image, then filters |
|
low quality and duplicate masks. The default settings are chosen |
|
for SAM with a ViT-H backbone. |
|
|
|
Arguments: |
|
model (Sam): The SAM model to use for mask prediction. |
|
points_per_side (int or None): The number of points to be sampled |
|
along one side of the image. The total number of points is |
|
points_per_side**2. If None, 'point_grids' must provide explicit |
|
point sampling. |
|
points_per_batch (int): Sets the number of points run simultaneously |
|
by the model. Higher numbers may be faster but use more GPU memory. |
|
pred_iou_thresh (float): A filtering threshold in [0,1], using the |
|
model's predicted mask quality. |
|
stability_score_thresh (float): A filtering threshold in [0,1], using |
|
the stability of the mask under changes to the cutoff used to binarize |
|
the model's mask predictions. |
|
stability_score_offset (float): The amount to shift the cutoff when |
|
calculated the stability score. |
|
box_nms_thresh (float): The box IoU cutoff used by non-maximal |
|
suppression to filter duplicate masks. |
|
crop_n_layers (int): If >0, mask prediction will be run again on |
|
crops of the image. Sets the number of layers to run, where each |
|
layer has 2**i_layer number of image crops. |
|
crop_nms_thresh (float): The box IoU cutoff used by non-maximal |
|
suppression to filter duplicate masks between different crops. |
|
crop_overlap_ratio (float): Sets the degree to which crops overlap. |
|
In the first crop layer, crops will overlap by this fraction of |
|
the image length. Later layers with more crops scale down this overlap. |
|
crop_n_points_downscale_factor (int): The number of points-per-side |
|
sampled in layer n is scaled down by crop_n_points_downscale_factor**n. |
|
point_grids (list(np.ndarray) or None): A list over explicit grids |
|
of points used for sampling, normalized to [0,1]. The nth grid in the |
|
list is used in the nth crop layer. Exclusive with points_per_side. |
|
min_mask_region_area (int): If >0, postprocessing will be applied |
|
to remove disconnected regions and holes in masks with area smaller |
|
than min_mask_region_area. Requires opencv. |
|
output_mode (str): The form masks are returned in. Can be 'binary_mask', |
|
'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools. |
|
For large resolutions, 'binary_mask' may consume large amounts of |
|
memory. |
|
""" |
|
|
|
assert (points_per_side is None) != ( |
|
point_grids is None |
|
), "Exactly one of points_per_side or point_grid must be provided." |
|
if points_per_side is not None: |
|
self.point_grids = build_all_layer_point_grids( |
|
points_per_side, |
|
crop_n_layers, |
|
crop_n_points_downscale_factor, |
|
) |
|
elif point_grids is not None: |
|
self.point_grids = point_grids |
|
else: |
|
raise ValueError("Can't have both points_per_side and point_grid be None.") |
|
|
|
assert output_mode in [ |
|
"binary_mask", |
|
"uncompressed_rle", |
|
"coco_rle", |
|
], f"Unknown output_mode {output_mode}." |
|
if output_mode == "coco_rle": |
|
from pycocotools import mask as mask_utils |
|
|
|
if min_mask_region_area > 0: |
|
import cv2 |
|
|
|
self.predictor = model |
|
self.points_per_batch = points_per_batch |
|
self.pred_iou_thresh = pred_iou_thresh |
|
self.stability_score_thresh = stability_score_thresh |
|
self.stability_score_offset = stability_score_offset |
|
self.box_nms_thresh = box_nms_thresh |
|
self.crop_n_layers = crop_n_layers |
|
self.crop_nms_thresh = crop_nms_thresh |
|
self.crop_overlap_ratio = crop_overlap_ratio |
|
self.crop_n_points_downscale_factor = crop_n_points_downscale_factor |
|
self.min_mask_region_area = min_mask_region_area |
|
self.output_mode = output_mode |
|
|