방재호
init
b5ba7a5
import os
import gc
import glob
import copy
from PIL import Image
from collections import OrderedDict
import numpy as np
import torch
import cv2
from sam_hq.automatic import SamAutomaticMaskGeneratorHQ
from modules import scripts, shared
from modules.paths import extensions_dir
from modules.devices import torch_gc
global_sam: SamAutomaticMaskGeneratorHQ = None
sem_seg_cache = OrderedDict()
sam_annotator_dir = os.path.join(scripts.basedir(), "annotator")
original_uniformer_inference_segmentor = None
def pad64(x):
return int(np.ceil(float(x) / 64.0) * 64 - x)
def safer_memory(x):
# Fix many MAC/AMD problems
return np.ascontiguousarray(x.copy()).copy()
def resize_image_with_pad(input_image, resolution):
from annotator.util import HWC3
img = HWC3(input_image)
H_raw, W_raw, _ = img.shape
k = float(resolution) / float(min(H_raw, W_raw))
interpolation = cv2.INTER_CUBIC if k > 1 else cv2.INTER_AREA
H_target = int(np.round(float(H_raw) * k))
W_target = int(np.round(float(W_raw) * k))
img = cv2.resize(img, (W_target, H_target), interpolation=interpolation)
H_pad, W_pad = pad64(H_target), pad64(W_target)
img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode='edge')
def remove_pad(x):
return safer_memory(x[:H_target, :W_target])
return safer_memory(img_padded), remove_pad
def blend_image_and_seg(image, seg, alpha=0.5):
image_blend = image * (1 - alpha) + np.array(seg) * alpha
return Image.fromarray(image_blend.astype(np.uint8))
def create_symbolic_link():
cnet_annotator_dir = os.path.join(extensions_dir, "sd-webui-controlnet/annotator")
if os.path.isdir(cnet_annotator_dir):
if not os.path.isdir(sam_annotator_dir):
os.symlink(cnet_annotator_dir, sam_annotator_dir, target_is_directory=True)
return True
return False
def clear_sem_sam_cache():
sem_seg_cache.clear()
gc.collect()
torch_gc()
def sem_sam_garbage_collect():
if shared.cmd_opts.lowvram:
for model_key, model in sem_seg_cache:
if model_key == "uniformer":
from annotator.uniformer import unload_uniformer_model
unload_uniformer_model()
else:
model.unload_model()
gc.collect()
torch_gc()
def strengthen_sem_seg(class_ids, img):
print("Auto SAM strengthening semantic segmentation")
import pycocotools.mask as maskUtils
semantc_mask = copy.deepcopy(class_ids)
annotations = global_sam.generate(img)
annotations = sorted(annotations, key=lambda x: x['area'], reverse=True)
print(f"Auto SAM generated {len(annotations)} masks")
for ann in annotations:
valid_mask = torch.tensor(maskUtils.decode(ann['segmentation'])).bool()
propose_classes_ids = torch.tensor(class_ids[valid_mask])
num_class_proposals = len(torch.unique(propose_classes_ids))
if num_class_proposals == 1:
semantc_mask[valid_mask] = propose_classes_ids[0].numpy()
continue
top_1_propose_class_ids = torch.bincount(propose_classes_ids.flatten()).topk(1).indices
semantc_mask[valid_mask] = top_1_propose_class_ids.numpy()
print("Auto SAM strengthen process end")
return semantc_mask
def random_segmentation(img):
print("Auto SAM generating random segmentation for Edit-Anything")
img_np = np.array(img.convert("RGB"))
annotations = global_sam.generate(img_np)
# annotations = sorted(annotations, key=lambda x: x['area'], reverse=True)
print(f"Auto SAM generated {len(annotations)} masks")
H, W, _ = img_np.shape
color_map = np.zeros((H, W, 3), dtype=np.uint8)
detected_map_tmp = np.zeros((H, W), dtype=np.uint16)
for idx, annotation in enumerate(annotations):
current_seg = annotation['segmentation']
color_map[current_seg] = np.random.randint(0, 255, (3))
detected_map_tmp[current_seg] = idx + 1
detected_map = np.zeros((detected_map_tmp.shape[0], detected_map_tmp.shape[1], 3))
detected_map[:, :, 0] = detected_map_tmp % 256
detected_map[:, :, 1] = detected_map_tmp // 256
from annotator.util import HWC3
detected_map = HWC3(detected_map.astype(np.uint8))
print("Auto SAM generation process end")
return [blend_image_and_seg(img_np, color_map), Image.fromarray(color_map), Image.fromarray(detected_map)], \
"Random segmentation done. Left above (0) is blended image, right above (1) is random segmentation, left below (2) is Edit-Anything control input."
def image_layer_image(layout_input_image, layout_output_path):
img_np = np.array(layout_input_image.convert("RGB"))
annotations = global_sam.generate(img_np)
print(f"AutoSAM generated {len(annotations)} annotations")
annotations = sorted(annotations, key=lambda x: x['area'])
for idx, annotation in enumerate(annotations):
img_tmp = np.zeros((img_np.shape[0], img_np.shape[1], 3))
img_tmp[annotation['segmentation']] = img_np[annotation['segmentation']]
img_np[annotation['segmentation']] = np.array([0, 0, 0])
img_tmp = Image.fromarray(img_tmp.astype(np.uint8))
img_tmp.save(os.path.join(layout_output_path, f"{idx}.png"))
img_np = Image.fromarray(img_np.astype(np.uint8))
img_np.save(os.path.join(layout_output_path, "leftover.png"))
def image_layer_internal(layout_input_image_or_path, layout_output_path):
if isinstance(layout_input_image_or_path, str):
print("Image layer division batch processing")
all_files = glob.glob(os.path.join(layout_input_image_or_path, "*"))
for image_index, input_image_file in enumerate(all_files):
print(f"Processing {image_index}/{len(all_files)} {input_image_file}")
try:
input_image = Image.open(input_image_file)
output_directory = os.path.join(layout_output_path, os.path.splitext(os.path.basename(input_image_file))[0])
from pathlib import Path
Path(output_directory).mkdir(exist_ok=True)
except:
print(f"File {input_image_file} not image, skipped.")
continue
image_layer_image(input_image, output_directory)
else:
image_layer_image(layout_input_image_or_path, layout_output_path)
return "Done"
def inject_uniformer_inference_segmentor(model, img):
original_result = original_uniformer_inference_segmentor(model, img)
original_result[0] = strengthen_sem_seg(original_result[0], img)
return original_result
def inject_uniformer_show_result_pyplot(model, img, result, palette=None, fig_size=(15, 10), opacity=0.5, title='', block=True):
return result[0]
def inject_oneformer_semantic_run(img, predictor, metadata):
predictions = predictor(img[:, :, ::-1], "semantic") # Predictor of OneFormer must use BGR image !!!
original_result = predictions["sem_seg"].argmax(dim=0).cpu().numpy()
from annotator.oneformer.oneformer.demo.visualizer import Visualizer, ColorMode
visualizer_map = Visualizer(img, is_img=False, metadata=metadata, instance_mode=ColorMode.IMAGE)
out_map = visualizer_map.draw_sem_seg(torch.tensor(strengthen_sem_seg(original_result, img), device='cpu'), alpha=1, is_text=False).get_image()
return out_map
def inject_oneformer_semantic_run_categorical_mask(img, predictor, metadata):
predictions = predictor(img[:, :, ::-1], "semantic") # Predictor of OneFormer must use BGR image !!!
original_result = predictions["sem_seg"].argmax(dim=0).cpu().numpy()
return strengthen_sem_seg(original_result, img)
def inject_oneformer_detector_call(self, img):
if self.model is None:
self.load_model()
self.model.model.to(self.device)
return inject_oneformer_semantic_run(img, self.model, self.metadata)
def inject_oneformer_detector_call_categorical_mask(self, img):
if self.model is None:
self.load_model()
self.model.model.to(self.device)
return inject_oneformer_semantic_run_categorical_mask(img, self.model, self.metadata)
def _uniformer(img):
if "uniformer" not in sem_seg_cache:
from annotator.uniformer import apply_uniformer
sem_seg_cache["uniformer"] = apply_uniformer
result = sem_seg_cache["uniformer"](img)
return result
def _oneformer(img, dataset="coco"):
oneformer_key = f"oneformer_{dataset}"
if oneformer_key not in sem_seg_cache:
from annotator.oneformer import OneformerDetector
sem_seg_cache[oneformer_key] = OneformerDetector(OneformerDetector.configs[dataset])
result = sem_seg_cache[oneformer_key](img)
return result
def semantic_segmentation(input_image, annotator_name, processor_res,
use_pixel_perfect, resize_mode, target_W, target_H):
if input_image is None:
return [], "No input image."
if "seg" in annotator_name:
if not os.path.isdir(os.path.join(scripts.basedir(), "annotator")) and not create_symbolic_link():
return [], "ControlNet extension not found."
global original_uniformer_inference_segmentor
input_image_np = np.array(input_image)
processor_res = pixel_perfect_lllyasviel(input_image_np, processor_res, use_pixel_perfect, resize_mode, target_W, target_H)
input_image, remove_pad = resize_image_with_pad(input_image_np, processor_res)
print("Generating semantic segmentation without SAM")
if annotator_name == "seg_ufade20k":
original_semseg = _uniformer(input_image)
print("Generating semantic segmentation with SAM")
import annotator.uniformer as uniformer
original_uniformer_inference_segmentor = uniformer.inference_segmentor
uniformer.inference_segmentor = inject_uniformer_inference_segmentor
sam_semseg = _uniformer(input_image)
uniformer.inference_segmentor = original_uniformer_inference_segmentor
original_semseg = remove_pad(original_semseg)
sam_semseg = remove_pad(sam_semseg)
input_image = remove_pad(input_image)
output_gallery = [original_semseg, sam_semseg, blend_image_and_seg(input_image, original_semseg), blend_image_and_seg(input_image, sam_semseg)]
return output_gallery, "Uniformer semantic segmentation of ade20k done. Left is segmentation before SAM, right is segmentation after SAM."
else:
dataset = annotator_name.split('_')[-1][2:]
original_semseg = _oneformer(input_image, dataset=dataset)
print("Generating semantic segmentation with SAM")
from annotator.oneformer import OneformerDetector
original_oneformer_call = OneformerDetector.__call__
OneformerDetector.__call__ = inject_oneformer_detector_call
sam_semseg = _oneformer(input_image, dataset=dataset)
OneformerDetector.__call__ = original_oneformer_call
original_semseg = remove_pad(original_semseg)
sam_semseg = remove_pad(sam_semseg)
input_image = remove_pad(input_image)
output_gallery = [original_semseg, sam_semseg, blend_image_and_seg(input_image, original_semseg), blend_image_and_seg(input_image, sam_semseg)]
return output_gallery, f"Oneformer semantic segmentation of {dataset} done. Left is segmentation before SAM, right is segmentation after SAM."
else:
return random_segmentation(input_image)
def categorical_mask_image(crop_processor, crop_processor_res, crop_category_input, crop_input_image,
crop_pixel_perfect, crop_resize_mode, target_W, target_H):
if crop_input_image is None:
return "No input image."
if not os.path.isdir(os.path.join(scripts.basedir(), "annotator")) and not create_symbolic_link():
return "ControlNet extension not found."
filter_classes = crop_category_input.split('+')
if len(filter_classes) == 0:
return "No class selected."
try:
filter_classes = [int(i) for i in filter_classes]
except:
return "Illegal class id. You may have input some string."
crop_input_image_np = np.array(crop_input_image)
crop_processor_res = pixel_perfect_lllyasviel(crop_input_image_np, crop_processor_res, crop_pixel_perfect, crop_resize_mode, target_W, target_H)
crop_input_image, remove_pad = resize_image_with_pad(crop_input_image_np, crop_processor_res)
crop_input_image_copy = copy.deepcopy(crop_input_image)
global original_uniformer_inference_segmentor
print(f"Generating categories with processor {crop_processor}")
if crop_processor == "seg_ufade20k":
import annotator.uniformer as uniformer
original_uniformer_inference_segmentor = uniformer.inference_segmentor
uniformer.inference_segmentor = inject_uniformer_inference_segmentor
tmp_ouis = uniformer.show_result_pyplot
uniformer.show_result_pyplot = inject_uniformer_show_result_pyplot
sam_semseg = _uniformer(crop_input_image)
uniformer.inference_segmentor = original_uniformer_inference_segmentor
uniformer.show_result_pyplot = tmp_ouis
else:
dataset = crop_processor.split('_')[-1][2:]
from annotator.oneformer import OneformerDetector
original_oneformer_call = OneformerDetector.__call__
OneformerDetector.__call__ = inject_oneformer_detector_call_categorical_mask
sam_semseg = _oneformer(crop_input_image, dataset=dataset)
OneformerDetector.__call__ = original_oneformer_call
sam_semseg = remove_pad(sam_semseg)
mask = np.zeros(sam_semseg.shape, dtype=np.bool_)
for i in filter_classes:
mask[sam_semseg == i] = True
return mask, remove_pad(crop_input_image_copy)
def register_auto_sam(sam,
auto_sam_points_per_side, auto_sam_points_per_batch, auto_sam_pred_iou_thresh,
auto_sam_stability_score_thresh, auto_sam_stability_score_offset, auto_sam_box_nms_thresh,
auto_sam_crop_n_layers, auto_sam_crop_nms_thresh, auto_sam_crop_overlap_ratio,
auto_sam_crop_n_points_downscale_factor, auto_sam_min_mask_region_area, auto_sam_output_mode):
global global_sam
global_sam = SamAutomaticMaskGeneratorHQ(
sam, auto_sam_points_per_side, auto_sam_points_per_batch,
auto_sam_pred_iou_thresh, auto_sam_stability_score_thresh,
auto_sam_stability_score_offset, auto_sam_box_nms_thresh,
auto_sam_crop_n_layers, auto_sam_crop_nms_thresh, auto_sam_crop_overlap_ratio,
auto_sam_crop_n_points_downscale_factor, None,
auto_sam_min_mask_region_area, auto_sam_output_mode)
def pixel_perfect_lllyasviel(input_image, processor_res, use_pixel_perfect, resize_mode, target_W, target_H):
preprocessor_resolution = processor_res
if use_pixel_perfect:
raw_H, raw_W, _ = input_image.shape
k0 = float(target_H) / float(raw_H)
k1 = float(target_W) / float(raw_W)
if resize_mode == 2:
estimation = min(k0, k1) * float(min(raw_H, raw_W))
else:
estimation = max(k0, k1) * float(min(raw_H, raw_W))
preprocessor_resolution = int(np.round(float(estimation) / 64.0)) * 64
print(f'Pixel Perfect Mode (written by lllyasviel) Enabled.')
print(f'resize_mode = {str(resize_mode)}')
print(f'raw_H = {raw_H}')
print(f'raw_W = {raw_W}')
print(f'target_H = {target_H}')
print(f'target_W = {target_W}')
print(f'estimation = {estimation}')
print(f'preprocessor resolution = {preprocessor_resolution}')
return preprocessor_resolution