|
import gc |
|
import os |
|
import copy |
|
import glob |
|
import numpy as np |
|
from PIL import Image |
|
import torch |
|
import gradio as gr |
|
from collections import OrderedDict |
|
from scipy.ndimage import binary_dilation |
|
from modules import scripts, shared, script_callbacks |
|
from modules.ui import gr_show |
|
from modules.ui_components import FormRow |
|
from modules.safe import unsafe_torch_load, load |
|
from modules.processing import StableDiffusionProcessingImg2Img, StableDiffusionProcessing |
|
from modules.devices import device, torch_gc, cpu |
|
from modules.paths import models_path |
|
from sam_hq.predictor import SamPredictorHQ |
|
from sam_hq.build_sam_hq import sam_model_registry |
|
from scripts.dino import dino_model_list, dino_predict_internal, show_boxes, clear_dino_cache, dino_install_issue_text |
|
from scripts.auto import clear_sem_sam_cache, register_auto_sam, semantic_segmentation, sem_sam_garbage_collect, image_layer_internal, categorical_mask_image |
|
from scripts.process_params import SAMProcessUnit, max_cn_num |
|
|
|
|
|
refresh_symbol = '\U0001f504' |
|
sam_model_cache = OrderedDict() |
|
scripts_sam_model_dir = os.path.join(scripts.basedir(), "models/sam") |
|
sd_sam_model_dir = os.path.join(models_path, "sam") |
|
sam_model_dir = sd_sam_model_dir if os.path.exists(sd_sam_model_dir) else scripts_sam_model_dir |
|
sam_model_list = [f for f in os.listdir(sam_model_dir) if os.path.isfile(os.path.join(sam_model_dir, f)) and f.split('.')[-1] != 'txt'] |
|
sam_device = device |
|
|
|
|
|
txt2img_width: gr.Slider = None |
|
txt2img_height: gr.Slider = None |
|
img2img_width: gr.Slider = None |
|
img2img_height: gr.Slider = None |
|
|
|
|
|
class ToolButton(gr.Button, gr.components.FormComponent): |
|
"""Small button with single emoji as text, fits inside gradio forms""" |
|
|
|
def __init__(self, **kwargs): |
|
super().__init__(variant="tool", **kwargs) |
|
|
|
def get_block_name(self): |
|
return "button" |
|
|
|
|
|
def show_masks(image_np, masks: np.ndarray, alpha=0.5): |
|
image = copy.deepcopy(image_np) |
|
np.random.seed(0) |
|
for mask in masks: |
|
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) |
|
image[mask] = image[mask] * (1 - alpha) + 255 * color.reshape(1, 1, -1) * alpha |
|
return image.astype(np.uint8) |
|
|
|
|
|
def update_mask(mask_gallery, chosen_mask, dilation_amt, input_image): |
|
print("Dilation Amount: ", dilation_amt) |
|
if isinstance(mask_gallery, list): |
|
mask_image = Image.open(mask_gallery[chosen_mask + 3]['name']) |
|
else: |
|
mask_image = mask_gallery |
|
binary_img = np.array(mask_image.convert('1')) |
|
if dilation_amt: |
|
mask_image, binary_img = dilate_mask(binary_img, dilation_amt) |
|
blended_image = Image.fromarray(show_masks(np.array(input_image), binary_img.astype(np.bool_)[None, ...])) |
|
matted_image = np.array(input_image) |
|
matted_image[~binary_img] = np.array([0, 0, 0, 0]) |
|
return [blended_image, mask_image, Image.fromarray(matted_image)] |
|
|
|
|
|
def load_sam_model(sam_checkpoint): |
|
model_type = sam_checkpoint.split('.')[0] |
|
if 'hq' not in model_type and 'mobile' not in model_type: |
|
model_type = '_'.join(model_type.split('_')[:-1]) |
|
sam_checkpoint_path = os.path.join(sam_model_dir, sam_checkpoint) |
|
torch.load = unsafe_torch_load |
|
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint_path) |
|
sam.to(device=sam_device) |
|
sam.eval() |
|
torch.load = load |
|
return sam |
|
|
|
|
|
def clear_sam_cache(): |
|
sam_model_cache.clear() |
|
gc.collect() |
|
torch_gc() |
|
|
|
|
|
def clear_cache(): |
|
clear_sam_cache() |
|
clear_dino_cache() |
|
clear_sem_sam_cache() |
|
|
|
|
|
def garbage_collect(sam): |
|
if shared.cmd_opts.lowvram: |
|
sam.to(cpu) |
|
gc.collect() |
|
torch_gc() |
|
|
|
|
|
def refresh_sam_models(*inputs): |
|
global sam_model_list |
|
sam_model_list = [f for f in os.listdir(sam_model_dir) if os.path.isfile( |
|
os.path.join(sam_model_dir, f)) and f.split('.')[-1] != 'txt'] |
|
dd = inputs[0] |
|
if dd in sam_model_list: |
|
selected = dd |
|
elif len(sam_model_list) > 0: |
|
selected = sam_model_list[0] |
|
else: |
|
selected = None |
|
return gr.Dropdown.update(choices=sam_model_list, value=selected) |
|
|
|
|
|
def init_sam_model(sam_model_name): |
|
print(f"Initializing SAM to {sam_device}") |
|
if sam_model_name in sam_model_cache: |
|
sam = sam_model_cache[sam_model_name] |
|
if shared.cmd_opts.lowvram or (str(sam_device) not in str(sam.device)): |
|
sam.to(device=sam_device) |
|
return sam |
|
elif sam_model_name in sam_model_list: |
|
clear_sam_cache() |
|
sam_model_cache[sam_model_name] = load_sam_model(sam_model_name) |
|
return sam_model_cache[sam_model_name] |
|
else: |
|
raise Exception( |
|
f"{sam_model_name} not found, please download model to models/sam.") |
|
|
|
|
|
def dilate_mask(mask, dilation_amt): |
|
x, y = np.meshgrid(np.arange(dilation_amt), np.arange(dilation_amt)) |
|
center = dilation_amt // 2 |
|
dilation_kernel = ((x - center)**2 + (y - center)**2 <= center**2).astype(np.uint8) |
|
dilated_binary_img = binary_dilation(mask, dilation_kernel) |
|
dilated_mask = Image.fromarray(dilated_binary_img.astype(np.uint8) * 255) |
|
return dilated_mask, dilated_binary_img |
|
|
|
|
|
def create_mask_output(image_np, masks, boxes_filt): |
|
print("Creating output image") |
|
mask_images, masks_gallery, matted_images = [], [], [] |
|
boxes_filt = boxes_filt.numpy().astype(int) if boxes_filt is not None else None |
|
for mask in masks: |
|
masks_gallery.append(Image.fromarray(np.any(mask, axis=0))) |
|
blended_image = show_masks(show_boxes(image_np, boxes_filt), mask) |
|
mask_images.append(Image.fromarray(blended_image)) |
|
image_np_copy = copy.deepcopy(image_np) |
|
image_np_copy[~np.any(mask, axis=0)] = np.array([0, 0, 0, 0]) |
|
matted_images.append(Image.fromarray(image_np_copy)) |
|
return mask_images + masks_gallery + matted_images |
|
|
|
|
|
def create_mask_batch_output( |
|
input_image_file, dino_batch_dest_dir, |
|
image_np, masks, boxes_filt, batch_dilation_amt, |
|
dino_batch_save_image, dino_batch_save_mask, dino_batch_save_background, dino_batch_save_image_with_mask): |
|
print("Creating batch output image") |
|
filename, ext = os.path.splitext(os.path.basename(input_image_file)) |
|
ext = ".png" |
|
for idx, mask in enumerate(masks): |
|
blended_image = show_masks(show_boxes(image_np, boxes_filt), mask) |
|
merged_mask = np.any(mask, axis=0) |
|
if dino_batch_save_background: |
|
merged_mask = ~merged_mask |
|
if batch_dilation_amt: |
|
_, merged_mask = dilate_mask(merged_mask, batch_dilation_amt) |
|
image_np_copy = copy.deepcopy(image_np) |
|
image_np_copy[~merged_mask] = np.array([0, 0, 0, 0]) |
|
if dino_batch_save_image: |
|
output_image = Image.fromarray(image_np_copy) |
|
output_image.save(os.path.join(dino_batch_dest_dir, f"{filename}_{idx}_output{ext}")) |
|
if dino_batch_save_mask: |
|
output_mask = Image.fromarray(merged_mask) |
|
output_mask.save(os.path.join(dino_batch_dest_dir, f"{filename}_{idx}_mask{ext}")) |
|
if dino_batch_save_image_with_mask: |
|
output_blend = Image.fromarray(blended_image) |
|
output_blend.save(os.path.join(dino_batch_dest_dir, f"{filename}_{idx}_blend{ext}")) |
|
|
|
|
|
def sam_predict(sam_model_name, input_image, positive_points, negative_points, |
|
dino_checkbox, dino_model_name, text_prompt, box_threshold, |
|
dino_preview_checkbox, dino_preview_boxes_selection): |
|
print("Start SAM Processing") |
|
if sam_model_name is None: |
|
return [], "SAM model not found. Please download SAM model from extension README." |
|
if input_image is None: |
|
return [], "SAM requires an input image. Please upload an image first." |
|
image_np = np.array(input_image) |
|
image_np_rgb = image_np[..., :3] |
|
dino_enabled = dino_checkbox and text_prompt is not None |
|
boxes_filt = None |
|
sam_predict_result = " done." |
|
if dino_enabled: |
|
boxes_filt, install_success = dino_predict_internal(input_image, dino_model_name, text_prompt, box_threshold) |
|
if dino_preview_checkbox is not None and dino_preview_checkbox and dino_preview_boxes_selection is not None: |
|
valid_indices = [int(i) for i in dino_preview_boxes_selection if int(i) < boxes_filt.shape[0]] |
|
boxes_filt = boxes_filt[valid_indices] |
|
sam = init_sam_model(sam_model_name) |
|
print(f"Running SAM Inference {image_np_rgb.shape}") |
|
predictor = SamPredictorHQ(sam, 'hq' in sam_model_name) |
|
predictor.set_image(image_np_rgb) |
|
if dino_enabled and boxes_filt.shape[0] > 1: |
|
sam_predict_status = f"SAM inference with {boxes_filt.shape[0]} boxes, point prompts discarded" |
|
print(sam_predict_status) |
|
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image_np.shape[:2]) |
|
masks, _, _ = predictor.predict_torch( |
|
point_coords=None, |
|
point_labels=None, |
|
boxes=transformed_boxes.to(sam_device), |
|
multimask_output=True) |
|
masks = masks.permute(1, 0, 2, 3).cpu().numpy() |
|
else: |
|
num_box = 0 if boxes_filt is None else boxes_filt.shape[0] |
|
num_points = len(positive_points) + len(negative_points) |
|
if num_box == 0 and num_points == 0: |
|
garbage_collect(sam) |
|
if dino_enabled and dino_preview_checkbox and num_box == 0: |
|
return [], "It seems that you are using a high box threshold with no point prompts. Please lower your box threshold and re-try." |
|
return [], "You neither added point prompts nor enabled GroundingDINO. Segmentation cannot be generated." |
|
sam_predict_status = f"SAM inference with {num_box} box, {len(positive_points)} positive prompts, {len(negative_points)} negative prompts" |
|
print(sam_predict_status) |
|
point_coords = np.array(positive_points + negative_points) |
|
point_labels = np.array([1] * len(positive_points) + [0] * len(negative_points)) |
|
box = copy.deepcopy(boxes_filt[0].numpy()) if boxes_filt is not None and boxes_filt.shape[0] > 0 else None |
|
masks, _, _ = predictor.predict( |
|
point_coords=point_coords if len(point_coords) > 0 else None, |
|
point_labels=point_labels if len(point_coords) > 0 else None, |
|
box=box, |
|
multimask_output=True) |
|
masks = masks[:, None, ...] |
|
garbage_collect(sam) |
|
return create_mask_output(image_np, masks, boxes_filt), sam_predict_status + sam_predict_result + (f" However, GroundingDINO installment has failed. Your process automatically fall back to local groundingdino. Check your terminal for more detail and {dino_install_issue_text}." if (dino_enabled and not install_success) else "") |
|
|
|
|
|
def dino_predict(input_image, dino_model_name, text_prompt, box_threshold): |
|
if input_image is None: |
|
return None, gr.update(), gr.update(visible=True, value=f"GroundingDINO requires input image.") |
|
if text_prompt is None or text_prompt == "": |
|
return None, gr.update(), gr.update(visible=True, value=f"GroundingDINO requires text prompt.") |
|
image_np = np.array(input_image) |
|
boxes_filt, install_success = dino_predict_internal(input_image, dino_model_name, text_prompt, box_threshold) |
|
boxes_filt = boxes_filt.numpy() |
|
boxes_choice = [str(i) for i in range(boxes_filt.shape[0])] |
|
return Image.fromarray(show_boxes(image_np, boxes_filt.astype(int), show_index=True)), gr.update(choices=boxes_choice, value=boxes_choice), gr.update(visible=False) if install_success else gr.update(visible=True, value=f"GroundingDINO installment failed. Your process automatically fall back to local groundingdino. See your terminal for more detail and {dino_install_issue_text}") |
|
|
|
|
|
def dino_batch_process( |
|
batch_sam_model_name, batch_dino_model_name, batch_text_prompt, batch_box_threshold, batch_dilation_amt, |
|
dino_batch_source_dir, dino_batch_dest_dir, |
|
dino_batch_output_per_image, dino_batch_save_image, dino_batch_save_mask, dino_batch_save_background, dino_batch_save_image_with_mask): |
|
if batch_text_prompt is None or batch_text_prompt == "": |
|
return "Please add text prompts to generate masks" |
|
print("Start batch processing") |
|
sam = init_sam_model(batch_sam_model_name) |
|
predictor = SamPredictorHQ(sam, 'hq' in batch_sam_model_name) |
|
|
|
process_info = "" |
|
install_success = True |
|
all_files = glob.glob(os.path.join(dino_batch_source_dir, "*")) |
|
for image_index, input_image_file in enumerate(all_files): |
|
print(f"Processing {image_index}/{len(all_files)} {input_image_file}") |
|
try: |
|
input_image = Image.open(input_image_file).convert("RGBA") |
|
except: |
|
print(f"File {input_image_file} not image, skipped.") |
|
continue |
|
image_np = np.array(input_image) |
|
image_np_rgb = image_np[..., :3] |
|
|
|
boxes_filt, install_success = dino_predict_internal(input_image, batch_dino_model_name, batch_text_prompt, batch_box_threshold) |
|
if boxes_filt is None or boxes_filt.shape[0] == 0: |
|
msg = f"GroundingDINO generated 0 box for image {input_image_file}, please lower the box threshold if you want any segmentation for this image. " |
|
print(msg) |
|
process_info += (msg + "\n") |
|
continue |
|
|
|
predictor.set_image(image_np_rgb) |
|
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image_np.shape[:2]) |
|
masks, _, _ = predictor.predict_torch( |
|
point_coords=None, |
|
point_labels=None, |
|
boxes=transformed_boxes.to(sam_device), |
|
multimask_output=(dino_batch_output_per_image == 1)) |
|
|
|
masks = masks.permute(1, 0, 2, 3).cpu().numpy() |
|
boxes_filt = boxes_filt.cpu().numpy().astype(int) |
|
|
|
create_mask_batch_output( |
|
input_image_file, dino_batch_dest_dir, |
|
image_np, masks, boxes_filt, batch_dilation_amt, |
|
dino_batch_save_image, dino_batch_save_mask, dino_batch_save_background, dino_batch_save_image_with_mask) |
|
|
|
garbage_collect(sam) |
|
return process_info + "Done" + ("" if install_success else f". However, GroundingDINO installment has failed. Your process automatically fall back to local groundingdino. See your terminal for more detail and {dino_install_issue_text}") |
|
|
|
|
|
def cnet_seg( |
|
sam_model_name, cnet_seg_input_image, cnet_seg_processor, cnet_seg_processor_res, |
|
cnet_seg_pixel_perfect, cnet_seg_resize_mode, target_W, target_H, |
|
auto_sam_points_per_side, auto_sam_points_per_batch, auto_sam_pred_iou_thresh, |
|
auto_sam_stability_score_thresh, auto_sam_stability_score_offset, auto_sam_box_nms_thresh, |
|
auto_sam_crop_n_layers, auto_sam_crop_nms_thresh, auto_sam_crop_overlap_ratio, |
|
auto_sam_crop_n_points_downscale_factor, auto_sam_min_mask_region_area): |
|
print(f"Start semantic segmentation with processor {cnet_seg_processor}") |
|
auto_sam_output_mode = "coco_rle" if "seg" in cnet_seg_processor else "binary_mask" |
|
sam = load_sam_model(sam_model_name) |
|
predictor = SamPredictorHQ(sam, 'hq' in sam_model_name) |
|
register_auto_sam(predictor, auto_sam_points_per_side, auto_sam_points_per_batch, auto_sam_pred_iou_thresh, |
|
auto_sam_stability_score_thresh, auto_sam_stability_score_offset, auto_sam_box_nms_thresh, |
|
auto_sam_crop_n_layers, auto_sam_crop_nms_thresh, auto_sam_crop_overlap_ratio, |
|
auto_sam_crop_n_points_downscale_factor, auto_sam_min_mask_region_area, auto_sam_output_mode) |
|
outputs = semantic_segmentation(cnet_seg_input_image, cnet_seg_processor, cnet_seg_processor_res, |
|
cnet_seg_pixel_perfect, cnet_seg_resize_mode, target_W, target_H) |
|
sem_sam_garbage_collect() |
|
garbage_collect(sam) |
|
return outputs |
|
|
|
|
|
def image_layout( |
|
sam_model_name, layout_input_image_or_path, layout_output_path, |
|
auto_sam_points_per_side, auto_sam_points_per_batch, auto_sam_pred_iou_thresh, |
|
auto_sam_stability_score_thresh, auto_sam_stability_score_offset, auto_sam_box_nms_thresh, |
|
auto_sam_crop_n_layers, auto_sam_crop_nms_thresh, auto_sam_crop_overlap_ratio, |
|
auto_sam_crop_n_points_downscale_factor, auto_sam_min_mask_region_area): |
|
print("Start processing image layout") |
|
sam = load_sam_model(sam_model_name) |
|
predictor = SamPredictorHQ(sam, 'hq' in sam_model_name) |
|
register_auto_sam(predictor, auto_sam_points_per_side, auto_sam_points_per_batch, auto_sam_pred_iou_thresh, |
|
auto_sam_stability_score_thresh, auto_sam_stability_score_offset, auto_sam_box_nms_thresh, |
|
auto_sam_crop_n_layers, auto_sam_crop_nms_thresh, auto_sam_crop_overlap_ratio, |
|
auto_sam_crop_n_points_downscale_factor, auto_sam_min_mask_region_area, "binary_mask") |
|
outputs = image_layer_internal(layout_input_image_or_path, layout_output_path) |
|
sem_sam_garbage_collect() |
|
garbage_collect(sam) |
|
return outputs |
|
|
|
|
|
def categorical_mask( |
|
sam_model_name, crop_processor, crop_processor_res, |
|
crop_pixel_perfect, crop_resize_mode, target_W, target_H, |
|
crop_category_input, crop_input_image, |
|
auto_sam_points_per_side, auto_sam_points_per_batch, auto_sam_pred_iou_thresh, |
|
auto_sam_stability_score_thresh, auto_sam_stability_score_offset, auto_sam_box_nms_thresh, |
|
auto_sam_crop_n_layers, auto_sam_crop_nms_thresh, auto_sam_crop_overlap_ratio, |
|
auto_sam_crop_n_points_downscale_factor, auto_sam_min_mask_region_area): |
|
print("Start processing categorical mask") |
|
sam = load_sam_model(sam_model_name) |
|
predictor = SamPredictorHQ(sam, 'hq' in sam_model_name) |
|
register_auto_sam(predictor, auto_sam_points_per_side, auto_sam_points_per_batch, auto_sam_pred_iou_thresh, |
|
auto_sam_stability_score_thresh, auto_sam_stability_score_offset, auto_sam_box_nms_thresh, |
|
auto_sam_crop_n_layers, auto_sam_crop_nms_thresh, auto_sam_crop_overlap_ratio, |
|
auto_sam_crop_n_points_downscale_factor, auto_sam_min_mask_region_area, "coco_rle") |
|
outputs, resized_input_image = categorical_mask_image(crop_processor, crop_processor_res, crop_category_input, crop_input_image, |
|
crop_pixel_perfect, crop_resize_mode, target_W, target_H) |
|
resized_input_image_pil = Image.fromarray(resized_input_image).convert("RGBA") |
|
resized_input_image_np = np.array(resized_input_image_pil) |
|
sem_sam_garbage_collect() |
|
garbage_collect(sam) |
|
if isinstance(outputs, str): |
|
return [], outputs, None |
|
output_gallery = create_mask_output(resized_input_image_np, outputs[None, None, ...], None) |
|
return output_gallery, "Done", resized_input_image_pil |
|
|
|
|
|
def categorical_mask_batch( |
|
sam_model_name, crop_processor, crop_processor_res, |
|
crop_pixel_perfect, crop_resize_mode, target_W, targe_H, |
|
crop_category_input, crop_batch_dilation_amt, crop_batch_source_dir, crop_batch_dest_dir, |
|
crop_batch_save_image, crop_batch_save_mask, crop_batch_save_image_with_mask, crop_batch_save_background, |
|
auto_sam_points_per_side, auto_sam_points_per_batch, auto_sam_pred_iou_thresh, |
|
auto_sam_stability_score_thresh, auto_sam_stability_score_offset, auto_sam_box_nms_thresh, |
|
auto_sam_crop_n_layers, auto_sam_crop_nms_thresh, auto_sam_crop_overlap_ratio, |
|
auto_sam_crop_n_points_downscale_factor, auto_sam_min_mask_region_area): |
|
print("Start processing categorical mask in batch") |
|
sam = load_sam_model(sam_model_name) |
|
predictor = SamPredictorHQ(sam, 'hq' in sam_model_name) |
|
register_auto_sam(predictor, auto_sam_points_per_side, auto_sam_points_per_batch, auto_sam_pred_iou_thresh, |
|
auto_sam_stability_score_thresh, auto_sam_stability_score_offset, auto_sam_box_nms_thresh, |
|
auto_sam_crop_n_layers, auto_sam_crop_nms_thresh, auto_sam_crop_overlap_ratio, |
|
auto_sam_crop_n_points_downscale_factor, auto_sam_min_mask_region_area, "coco_rle") |
|
all_files = glob.glob(os.path.join(crop_batch_source_dir, "*")) |
|
process_info = "" |
|
for image_index, input_image_file in enumerate(all_files): |
|
print(f"Processing {image_index}/{len(all_files)} {input_image_file}") |
|
try: |
|
crop_input_image = Image.open(input_image_file).convert("RGB") |
|
except: |
|
print(f"File {input_image_file} not image, skipped.") |
|
continue |
|
outputs, resized_input_image = categorical_mask_image(crop_processor, crop_processor_res, crop_category_input, crop_input_image, |
|
crop_pixel_perfect, crop_resize_mode, target_W, targe_H) |
|
if isinstance(outputs, str): |
|
outputs = f"Image {image_index}: {outputs}" |
|
print(outputs) |
|
process_info += outputs + "\n" |
|
continue |
|
resized_input_image_pil = Image.fromarray(resized_input_image).convert("RGBA") |
|
resized_input_image_np = np.array(resized_input_image_pil) |
|
create_mask_batch_output( |
|
input_image_file, crop_batch_dest_dir, |
|
resized_input_image_np, outputs[None, None, ...], None, crop_batch_dilation_amt, |
|
crop_batch_save_image, crop_batch_save_mask, crop_batch_save_background, crop_batch_save_image_with_mask) |
|
sem_sam_garbage_collect() |
|
garbage_collect(sam) |
|
return process_info + "Done" |
|
|
|
|
|
def priorize_sam_scripts(is_img2img): |
|
cnet_idx, sam_idx = None, None |
|
if is_img2img: |
|
for idx, s in enumerate(scripts.scripts_img2img.alwayson_scripts): |
|
if s.title() == "Segment Anything": |
|
sam_idx = idx |
|
elif s.title() == "ControlNet": |
|
cnet_idx = idx |
|
if cnet_idx is not None and sam_idx is not None and cnet_idx < sam_idx: |
|
scripts.scripts_img2img.alwayson_scripts[cnet_idx], scripts.scripts_img2img.alwayson_scripts[ |
|
sam_idx] = scripts.scripts_img2img.alwayson_scripts[sam_idx], scripts.scripts_img2img.alwayson_scripts[cnet_idx] |
|
else: |
|
for idx, s in enumerate(scripts.scripts_txt2img.alwayson_scripts): |
|
if s.title() == "Segment Anything": |
|
sam_idx = idx |
|
elif s.title() == "ControlNet": |
|
cnet_idx = idx |
|
if cnet_idx is not None and sam_idx is not None and cnet_idx < sam_idx: |
|
scripts.scripts_txt2img.alwayson_scripts[cnet_idx], scripts.scripts_txt2img.alwayson_scripts[ |
|
sam_idx] = scripts.scripts_txt2img.alwayson_scripts[sam_idx], scripts.scripts_txt2img.alwayson_scripts[cnet_idx] |
|
|
|
|
|
def ui_sketch_inner(): |
|
sam_inpaint_color_sketch = gr.Image(label="Color sketch inpainting", source="upload", interactive=True, type="pil", tool="color-sketch", image_mode="RGBA") |
|
sam_inpaint_mask_alpha = gr.Slider(label="Mask transparency") |
|
return sam_inpaint_color_sketch, sam_inpaint_mask_alpha |
|
|
|
|
|
def ui_sketch(sam_input_image, is_img2img): |
|
with gr.Column(visible=False): |
|
sam_sketch_checkbox = gr.Checkbox(value=False, label="Enable Sketch") |
|
with gr.Column(visible=False) as sketch_column: |
|
sam_inpaint_copy_button = gr.Button(value="Copy from input image") |
|
sam_inpaint_color_sketch, sam_inpaint_mask_alpha = ui_sketch_inner() |
|
sam_inpaint_copy_button.click( |
|
fn=lambda x: x, |
|
inputs=[sam_input_image], |
|
outputs=[sam_inpaint_color_sketch]) |
|
sam_sketch_checkbox.change( |
|
fn=gr_show, |
|
inputs=[sam_sketch_checkbox], |
|
outputs=[sketch_column], |
|
show_progress=False) |
|
return sam_sketch_checkbox, sam_inpaint_color_sketch, sam_inpaint_mask_alpha |
|
|
|
def ui_dilation(sam_output_mask_gallery, sam_output_chosen_mask, sam_input_image): |
|
sam_dilation_checkbox = gr.Checkbox(value=False, label="Expand Mask") |
|
with gr.Column(visible=False) as dilation_column: |
|
sam_dilation_amt = gr.Slider(minimum=0, maximum=100, default=0, value=0, label="Specify the amount that you wish to expand the mask by (recommend 30)") |
|
sam_dilation_output_gallery = gr.Gallery(label="Expanded Mask").style(grid=3) |
|
sam_dilation_submit = gr.Button(value="Update Mask") |
|
sam_dilation_submit.click( |
|
fn=update_mask, |
|
inputs=[sam_output_mask_gallery, sam_output_chosen_mask, sam_dilation_amt, sam_input_image], |
|
outputs=[sam_dilation_output_gallery]) |
|
sam_dilation_checkbox.change( |
|
fn=gr_show, |
|
inputs=[sam_dilation_checkbox], |
|
outputs=[dilation_column], |
|
show_progress=False) |
|
return sam_dilation_checkbox, sam_dilation_output_gallery |
|
|
|
|
|
def ui_inpaint(is_img2img, max_cn): |
|
with FormRow(): |
|
if is_img2img: |
|
inpaint_upload_enable_label = "Copy to Inpaint Upload" + (" & img2img ControlNet Inpainting" if max_cn > 0 else "") |
|
else: |
|
inpaint_upload_enable_label = "Copy to txt2img ControlNet Inpainting" if max_cn > 0 else "" |
|
inpaint_upload_enable = gr.Checkbox(value=False, label=inpaint_upload_enable_label, visible=(len(inpaint_upload_enable_label) > 0)) |
|
cnet_inpaint_invert = gr.Checkbox(value=False, label='ControlNet inpaint not masked', visible=((max_cn > 0) and not is_img2img)) |
|
cnet_inpaint_idx = gr.Radio(value="0" if max_cn > 0 else None, choices=[str(i) for i in range(max_cn)], label='ControlNet Inpaint Index', type="index", visible=((max_cn > 0) and not is_img2img)) |
|
return inpaint_upload_enable, cnet_inpaint_invert, cnet_inpaint_idx |
|
|
|
|
|
def ui_batch(is_dino): |
|
dino_batch_dilation_amt = gr.Slider(minimum=0, maximum=100, default=0, value=0, label="Specify the amount that you wish to expand the mask by (recommend 0-10)") |
|
dino_batch_source_dir = gr.Textbox(label="Source directory") |
|
dino_batch_dest_dir = gr.Textbox(label="Destination directory") |
|
with gr.Row(): |
|
dino_batch_output_per_image = gr.Radio(choices=["1", "3"], value="3", type="index", label="Output per image: ", visible=is_dino) |
|
dino_batch_save_image = gr.Checkbox(value=True, label="Save masked image") |
|
dino_batch_save_mask = gr.Checkbox(value=True, label="Save mask") |
|
dino_batch_save_image_with_mask = gr.Checkbox(value=True, label="Save original image with mask and bounding box") |
|
dino_batch_save_background = gr.Checkbox(value=False, label="Save background instead of foreground") |
|
dino_batch_run_button = gr.Button(value="Start batch process") |
|
dino_batch_progress = gr.Text(value="", label="GroundingDINO batch progress status") |
|
return dino_batch_dilation_amt, dino_batch_source_dir, dino_batch_dest_dir, dino_batch_output_per_image, dino_batch_save_image, dino_batch_save_mask, dino_batch_save_image_with_mask, dino_batch_save_background, dino_batch_run_button, dino_batch_progress |
|
|
|
|
|
def ui_processor(use_random=True, use_cnet=True): |
|
processor_choices = ["seg_ufade20k", "seg_ofade20k", "seg_ofcoco"] |
|
if use_random: |
|
processor_choices.append("random") |
|
with gr.Row(): |
|
cnet_seg_processor = gr.Radio(choices=processor_choices, value="seg_ufade20k", label="Choose preprocessor for semantic segmentation: ") |
|
cnet_seg_processor_res = gr.Slider(label="Preprocessor resolution", value=512, minimum=64, maximum=2048, step=1) |
|
cnet_seg_resize_mode = gr.Radio(choices=["Just Resize", "Crop and Resize", "Resize and Fill"], value="Crop and Resize", label="Resize Mode", type="index", visible=False) |
|
if use_random and use_cnet: |
|
cnet_seg_gallery_input = gr.Radio( |
|
choices=["1", "2"], value="2", type="index", visible=False, |
|
label="Select ControlNet input from random segmentation gallery. Choose 2 for Edit-Anything ControlNet.") |
|
else: |
|
cnet_seg_gallery_input = gr.Label(visible=False) |
|
with gr.Row(): |
|
cnet_seg_pixel_perfect = gr.Checkbox(value=False, label="Enable Pixel Perfect from lllyasviel. " |
|
"Configure your target width and height on txt2img/img2img default panel before preview if you wish to enable pixel perfect.") |
|
if use_random and use_cnet: |
|
cnet_seg_processor.change( |
|
fn=lambda x, y: (gr_show(x=="random"), gr_show(x!="random"), gr_show(x!="random" and not y), gr_show(x!="random" and y)), |
|
inputs=[cnet_seg_processor, cnet_seg_pixel_perfect], |
|
outputs=[cnet_seg_gallery_input, cnet_seg_pixel_perfect, cnet_seg_processor_res, cnet_seg_resize_mode], |
|
show_progress=False) |
|
cnet_seg_pixel_perfect.change( |
|
fn=lambda x: (gr_show(x), gr_show(not x)), |
|
inputs=[cnet_seg_pixel_perfect], |
|
outputs=[cnet_seg_resize_mode, cnet_seg_processor_res], |
|
show_progress=False) |
|
return cnet_seg_processor, cnet_seg_processor_res, cnet_seg_gallery_input, cnet_seg_pixel_perfect, cnet_seg_resize_mode |
|
|
|
|
|
class Script(scripts.Script): |
|
|
|
def title(self): |
|
return 'Segment Anything' |
|
|
|
def show(self, is_img2img): |
|
return scripts.AlwaysVisible |
|
|
|
def ui(self, is_img2img): |
|
if max_cn_num() > 0: |
|
priorize_sam_scripts(is_img2img) |
|
tab_prefix = ("img2img" if is_img2img else "txt2img") + "_sam_" |
|
ui_process = () |
|
with gr.Accordion('Segment Anything', open=False): |
|
with gr.Row(): |
|
with gr.Column(scale=10): |
|
with gr.Row(): |
|
sam_model_name = gr.Dropdown(label="SAM Model", choices=sam_model_list, value=sam_model_list[0] if len(sam_model_list) > 0 else None) |
|
sam_refresh_models = ToolButton(value=refresh_symbol) |
|
sam_refresh_models.click(refresh_sam_models, sam_model_name, sam_model_name) |
|
with gr.Column(scale=1): |
|
sam_use_cpu = gr.Checkbox(value=False, label="Use CPU for SAM") |
|
def change_sam_device(use_cpu=False): |
|
global sam_device |
|
sam_device = "cpu" if use_cpu else device |
|
sam_use_cpu.change(fn=change_sam_device, inputs=[sam_use_cpu], show_progress=False) |
|
with gr.Tabs(): |
|
with gr.TabItem(label="Single Image"): |
|
gr.HTML(value="<p>Left click the image to add one positive point (black dot). Right click the image to add one negative point (red dot). Left click the point to remove it.</p>") |
|
sam_input_image = gr.Image(label="Image for Segment Anything", elem_id=f"{tab_prefix}input_image", source="upload", type="pil", image_mode="RGBA") |
|
sam_remove_dots = gr.Button(value="Remove all point prompts") |
|
sam_dummy_component = gr.Label(visible=False) |
|
sam_remove_dots.click( |
|
fn=lambda _: None, |
|
_js="samRemoveDots", |
|
inputs=[sam_dummy_component], |
|
outputs=None) |
|
gr.HTML(value="<p>GroundingDINO + Segment Anything can achieve [text prompt]->[object detection]->[segmentation]</p>") |
|
dino_checkbox = gr.Checkbox(value=False, label="Enable GroundingDINO", elem_id=f"{tab_prefix}dino_enable_checkbox") |
|
with gr.Column(visible=False) as dino_column: |
|
gr.HTML(value="<p>Due to the limitation of Segment Anything, when there are point prompts, at most 1 box prompt will be allowed; when there are multiple box prompts, no point prompts are allowed.</p>") |
|
dino_model_name = gr.Dropdown(label="GroundingDINO Model (Auto download from huggingface)", choices=dino_model_list, value=dino_model_list[0]) |
|
dino_text_prompt = gr.Textbox(placeholder="You must enter text prompts to enable groundingdino. Otherwise this extension will fall back to point prompts only.", label="GroundingDINO Detection Prompt", elem_id=f"{tab_prefix}dino_text_prompt") |
|
dino_box_threshold = gr.Slider(label="GroundingDINO Box Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.001) |
|
dino_preview_checkbox = gr.Checkbox(value=False, label="I want to preview GroundingDINO detection result and select the boxes I want.", elem_id=f"{tab_prefix}dino_preview_checkbox") |
|
with gr.Column(visible=False) as dino_preview: |
|
dino_preview_boxes = gr.Image(show_label=False, type="pil", image_mode="RGBA") |
|
dino_preview_boxes_button = gr.Button(value="Generate bounding box", elem_id=f"{tab_prefix}dino_run_button") |
|
dino_preview_boxes_selection = gr.CheckboxGroup(label="Select your favorite boxes: ", elem_id=f"{tab_prefix}dino_preview_boxes_selection") |
|
dino_preview_result = gr.Text(value="", label="GroundingDINO preview status", visible=False) |
|
dino_preview_boxes_button.click( |
|
fn=dino_predict, |
|
_js="submit_dino", |
|
inputs=[sam_input_image, dino_model_name, dino_text_prompt, dino_box_threshold], |
|
outputs=[dino_preview_boxes, dino_preview_boxes_selection, dino_preview_result]) |
|
dino_preview_checkbox.change( |
|
fn=gr_show, |
|
inputs=[dino_preview_checkbox], |
|
outputs=[dino_preview], |
|
show_progress=False) |
|
dino_checkbox.change( |
|
fn=gr_show, |
|
inputs=[dino_checkbox], |
|
outputs=[dino_column], |
|
show_progress=False) |
|
sam_output_mask_gallery = gr.Gallery(label='Segment Anything Output').style(grid=3) |
|
sam_submit = gr.Button(value="Preview Segmentation", elem_id=f"{tab_prefix}run_button") |
|
sam_result = gr.Text(value="", label="Segment Anything status") |
|
sam_submit.click( |
|
fn=sam_predict, |
|
_js='submit_sam', |
|
inputs=[sam_model_name, sam_input_image, |
|
sam_dummy_component, sam_dummy_component, |
|
dino_checkbox, dino_model_name, dino_text_prompt, dino_box_threshold, |
|
dino_preview_checkbox, dino_preview_boxes_selection], |
|
outputs=[sam_output_mask_gallery, sam_result]) |
|
with FormRow(): |
|
sam_output_chosen_mask = gr.Radio(label="Choose your favorite mask: ", value="0", choices=["0", "1", "2"], type="index") |
|
gr.Checkbox(value=False, label="Preview automatically when add/remove points", elem_id=f"{tab_prefix}realtime_preview_checkbox") |
|
sam_inpaint_upload_enable, sam_cnet_inpaint_invert, sam_cnet_inpaint_idx = ui_inpaint(is_img2img, max_cn_num()) |
|
sam_dilation_checkbox, sam_dilation_output_gallery = ui_dilation(sam_output_mask_gallery, sam_output_chosen_mask, sam_input_image) |
|
sam_single_image_process = ( |
|
sam_inpaint_upload_enable, sam_cnet_inpaint_invert, sam_cnet_inpaint_idx, |
|
sam_input_image, sam_output_mask_gallery, sam_output_chosen_mask, |
|
sam_dilation_checkbox, sam_dilation_output_gallery) |
|
ui_process += sam_single_image_process |
|
|
|
with gr.TabItem(label="Batch Process"): |
|
gr.Markdown(value="You may configurate the following items and generate masked image for all images under a directory. This mode is designed for generating LoRA/LyCORIS training set.") |
|
gr.Markdown(value="The current workflow is [text prompt]->[object detection]->[segmentation]. Semantic segmentation support is in Auto SAM panel.") |
|
dino_batch_model_name = gr.Dropdown(label="GroundingDINO Model (Auto download from huggingface)", choices=dino_model_list, value=dino_model_list[0]) |
|
dino_batch_text_prompt = gr.Textbox(label="GroundingDINO Detection Prompt") |
|
dino_batch_box_threshold = gr.Slider(label="GroundingDINO Box Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.001) |
|
dino_batch_dilation_amt, dino_batch_source_dir, dino_batch_dest_dir, dino_batch_output_per_image, dino_batch_save_image, dino_batch_save_mask, dino_batch_save_image_with_mask, dino_batch_save_background, dino_batch_run_button, dino_batch_progress = ui_batch(True) |
|
dino_batch_run_button.click( |
|
fn=dino_batch_process, |
|
inputs=[sam_model_name, dino_batch_model_name, dino_batch_text_prompt, dino_batch_box_threshold, dino_batch_dilation_amt, |
|
dino_batch_source_dir, dino_batch_dest_dir, dino_batch_output_per_image, |
|
dino_batch_save_image, dino_batch_save_mask, dino_batch_save_background, dino_batch_save_image_with_mask], |
|
outputs=[dino_batch_progress]) |
|
|
|
with gr.TabItem(label="Auto SAM"): |
|
gr.Markdown("Auto SAM is mainly for semantic segmentation and image layout generation, which is supported based on ControlNet. You must have ControlNet extension installed, and you should not change its directory name (sd-webui-controlnet).") |
|
gr.Markdown("The annotator directory inside the SAM extension directory is only a symbolic link. This is to save your space and make the extension repository clean.") |
|
|
|
with gr.Accordion(label="Auto SAM Config", open=False): |
|
gr.Markdown("You may configurate automatic sam generation. See [here](https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/automatic_mask_generator.py#L35-L96) for explanation of each parameter. If you still cannot understand, use default.") |
|
with gr.Row(): |
|
auto_sam_points_per_side = gr.Number(label="points_per_side", value=32, precision=0) |
|
auto_sam_points_per_batch = gr.Number(label="points_per_batch", value=64, precision=0) |
|
auto_sam_pred_iou_thresh = gr.Slider(minimum=0, maximum=1, value=0.88, step=0.01, label="pred_iou_thresh") |
|
auto_sam_stability_score_thresh = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.01, label="stability_score_thresh") |
|
auto_sam_stability_score_offset = gr.Number(label="stability_score_offset", value=1) |
|
with gr.Row(): |
|
auto_sam_box_nms_thresh = gr.Slider(label="box_nms_thresh", value=0.7, minimum=0, maximum=1, step=0.01) |
|
auto_sam_crop_n_layers = gr.Number(label="crop_n_layers", value=0, precision=0) |
|
auto_sam_crop_nms_thresh = gr.Slider(label="crop_nms_thresh", value=0.7, minimum=0, maximum=1, step=0.01) |
|
auto_sam_crop_overlap_ratio = gr.Slider(label="crop_overlap_ratio", value=512/1500, minimum=0, maximum=1, step=0.01) |
|
auto_sam_crop_n_points_downscale_factor = gr.Number(label="crop_n_points_downscale_factor", value=1, precision=0) |
|
auto_sam_min_mask_region_area = gr.Number(label="min_mask_region_area", value=0, precision=0) |
|
auto_sam_config = (auto_sam_points_per_side, auto_sam_points_per_batch, auto_sam_pred_iou_thresh, |
|
auto_sam_stability_score_thresh, auto_sam_stability_score_offset, auto_sam_box_nms_thresh, |
|
auto_sam_crop_n_layers, auto_sam_crop_nms_thresh, auto_sam_crop_overlap_ratio, |
|
auto_sam_crop_n_points_downscale_factor, auto_sam_min_mask_region_area) |
|
|
|
with gr.Tabs(): |
|
with gr.TabItem(label="ControlNet"): |
|
gr.Markdown( |
|
"You can enhance semantic segmentation for control_v11p_sd15_seg from lllyasviel. " |
|
"You can also utilize [Edit-Anything](https://github.com/sail-sg/EditAnything) and generate images according to random segmentation which preserve image layout.") |
|
cnet_seg_processor, cnet_seg_processor_res, cnet_seg_gallery_input, cnet_seg_pixel_perfect, cnet_seg_resize_mode = ui_processor(use_cnet=(max_cn_num() > 0)) |
|
cnet_seg_input_image = gr.Image(label="Image for Auto Segmentation", source="upload", type="pil", image_mode="RGBA") |
|
cnet_seg_output_gallery = gr.Gallery(label="Auto segmentation output").style(grid=2) |
|
cnet_seg_submit = gr.Button(value="Preview segmentation image") |
|
cnet_seg_status = gr.Text(value="", label="Segmentation status") |
|
cnet_seg_submit.click( |
|
fn=cnet_seg, |
|
inputs=[sam_model_name, cnet_seg_input_image, cnet_seg_processor, cnet_seg_processor_res, cnet_seg_pixel_perfect, cnet_seg_resize_mode, img2img_width if is_img2img else txt2img_width, img2img_height if is_img2img else txt2img_height, *auto_sam_config], |
|
outputs=[cnet_seg_output_gallery, cnet_seg_status]) |
|
with gr.Row(visible=(max_cn_num() > 0)): |
|
cnet_seg_enable_copy = gr.Checkbox(value=False, label='Copy to ControlNet Segmentation') |
|
cnet_seg_idx = gr.Radio(value="0" if max_cn_num() > 0 else None, choices=[str(i) for i in range(max_cn_num())], label='ControlNet Segmentation Index', type="index") |
|
auto_sam_process = (cnet_seg_output_gallery, cnet_seg_enable_copy, cnet_seg_idx, cnet_seg_gallery_input) |
|
ui_process += auto_sam_process |
|
|
|
with gr.TabItem(label="Image Layout"): |
|
gr.Markdown("You can generate image layout either in single image or in batch. Since there might be A LOT of outputs, there is no gallery for preview. You need to go to the output folder for either single image or batch process.") |
|
layout_mode = gr.Radio(choices=["single image", "batch process"], value="single image", type="index", label="Choose mode: ") |
|
layout_input_image = gr.Image(label="Image for Image Layout", source="upload", type="pil", image_mode="RGBA") |
|
layout_input_path = gr.Textbox(label="Input path", placeholder="Enter input path", visible=False) |
|
layout_output_path = gr.Textbox(label="Output path", placeholder="Enter output path") |
|
layout_submit_single = gr.Button(value="Generate layout for single image") |
|
layout_submit_batch = gr.Button(value="Generate layout for batch process", visible=False) |
|
layout_status = gr.Text(value="", label="Image layout status") |
|
def layout_show(mode): |
|
is_single = mode == 0 |
|
return gr_show(is_single), gr_show(is_single), gr_show(not is_single), gr_show(not is_single) |
|
layout_mode.change( |
|
fn=layout_show, |
|
inputs=[layout_mode], |
|
outputs=[layout_input_image, layout_submit_single, layout_input_path, layout_submit_batch]) |
|
layout_submit_single.click( |
|
fn=image_layout, |
|
inputs=[sam_model_name, layout_input_image, layout_output_path, *auto_sam_config], |
|
outputs=[layout_status]) |
|
layout_submit_batch.click( |
|
fn=image_layout, |
|
inputs=[sam_model_name, layout_input_path, layout_output_path, *auto_sam_config], |
|
outputs=[layout_status]) |
|
|
|
with gr.TabItem(label="Mask by Category"): |
|
gr.Markdown( |
|
"You can mask images by their categories via semantic segmentation. Please enter category ids (integers), separated by `+`. " |
|
"Visit [here](https://github.com/Mikubill/sd-webui-controlnet/blob/main/annotator/oneformer/oneformer/data/datasets/register_ade20k_panoptic.py#L12-L207) for ade20k " |
|
"and [here](https://github.com/Mikubill/sd-webui-controlnet/blob/main/annotator/oneformer/detectron2/data/datasets/builtin_meta.py#L20-L153) for coco to get category->id map. Note that coco jumps some numbers, so the actual ID is line_number - 21.") |
|
crop_processor, crop_processor_res, _, crop_pixel_perfect, crop_resize_mode = ui_processor(False) |
|
crop_category_input = gr.Textbox(placeholder="Enter categody ids, separated by +. For example, if you want bed+person, your input should be 7+12 for ade20k and 59+0 for coco.", label="Enter category IDs") |
|
with gr.Tabs(): |
|
with gr.TabItem(label="Single Image"): |
|
crop_input_image = gr.Image(label="Image to be masked", source="upload", type="pil", image_mode="RGBA") |
|
crop_output_gallery = gr.Gallery(label="Output").style(grid=3) |
|
crop_padding = gr.Number(value=-2, visible=False, interactive=False, precision=0) |
|
crop_resized_image = gr.Image(label="Resized image", source="upload", type="pil", image_mode="RGBA", visible=False) |
|
crop_submit = gr.Button(value="Preview mask") |
|
crop_result = gr.Text(value="", label="Categorical mask status") |
|
crop_submit.click( |
|
fn=categorical_mask, |
|
inputs=[sam_model_name, crop_processor, crop_processor_res, crop_pixel_perfect, crop_resize_mode, |
|
img2img_width if is_img2img else txt2img_width, img2img_height if is_img2img else txt2img_height, |
|
crop_category_input, crop_input_image, *auto_sam_config], |
|
outputs=[crop_output_gallery, crop_result, crop_resized_image]) |
|
crop_inpaint_enable, crop_cnet_inpaint_invert, crop_cnet_inpaint_idx = ui_inpaint(is_img2img, max_cn_num()) |
|
crop_dilation_checkbox, crop_dilation_output_gallery = ui_dilation(crop_output_gallery, crop_padding, crop_resized_image) |
|
crop_single_image_process = ( |
|
crop_inpaint_enable, crop_cnet_inpaint_invert, crop_cnet_inpaint_idx, |
|
crop_resized_image, crop_output_gallery, crop_padding, |
|
crop_dilation_checkbox, crop_dilation_output_gallery) |
|
ui_process += crop_single_image_process |
|
|
|
with gr.TabItem(label="Batch Process"): |
|
crop_batch_dilation_amt, crop_batch_source_dir, crop_batch_dest_dir, _, crop_batch_save_image, crop_batch_save_mask, crop_batch_save_image_with_mask, crop_batch_save_background, crop_batch_run_button, crop_batch_progress = ui_batch(False) |
|
crop_batch_run_button.click( |
|
fn=categorical_mask_batch, |
|
inputs=[sam_model_name, crop_processor, crop_processor_res, crop_pixel_perfect, crop_resize_mode, |
|
img2img_width if is_img2img else txt2img_width, img2img_height if is_img2img else txt2img_height, |
|
crop_category_input, crop_batch_dilation_amt, crop_batch_source_dir, crop_batch_dest_dir, |
|
crop_batch_save_image, crop_batch_save_mask, crop_batch_save_image_with_mask, crop_batch_save_background, *auto_sam_config], |
|
outputs=[crop_batch_progress]) |
|
|
|
|
|
with gr.TabItem(label="Upload Mask to ControlNet Inpainting"): |
|
gr.Markdown("This panel is for those who want to upload mask to ControlNet inpainting. It is not part of the SAM feature. It might be removed someday when ControlNet support uploading image and mask. " |
|
"It serves as a temporarily workaround to overcome the unavailability of image with mask uploading feature in ControlNet extension.") |
|
with gr.Row(): |
|
cnet_upload_enable = gr.Checkbox(value=False, label="Enable uploading manually created mask to SAM.") |
|
cnet_upload_num = gr.Radio(value="0", choices=[str(i) for i in range(max_cn_num())], label='ControlNet Inpaint Number', type="index") |
|
with gr.Column(visible=False) as cnet_upload_panel: |
|
cnet_upload_img_inpaint = gr.Image(label="Image for ControlNet Inpaint", show_label=False, source="upload", interactive=True, type="pil") |
|
cnet_upload_mask_inpaint = gr.Image(label="Mask for ControlNet Inpaint", source="upload", interactive=True, type="pil") |
|
cnet_upload_enable.change( |
|
fn=gr_show, |
|
inputs=[cnet_upload_enable], |
|
outputs=[cnet_upload_panel], |
|
show_progress=False) |
|
cnet_upload_process = (cnet_upload_enable, cnet_upload_num, cnet_upload_img_inpaint, cnet_upload_mask_inpaint) |
|
ui_process += cnet_upload_process |
|
|
|
with gr.Row(): |
|
switch = gr.Button(value="Switch to Inpaint Upload") |
|
unload = gr.Button(value="Unload all models from memory") |
|
uncheck = gr.Button(value="Uncheck all copies") |
|
switch.click( |
|
fn=lambda _: None, |
|
_js="switchToInpaintUpload", |
|
inputs=[sam_dummy_component], |
|
outputs=None) |
|
unload.click( |
|
fn=clear_cache, |
|
inputs=[], |
|
outputs=[]) |
|
uncheck.click( |
|
fn=lambda _: (gr.update(value=False), gr.update(value=False), gr.update(value=False)), |
|
inputs=None, |
|
outputs=[sam_inpaint_upload_enable, cnet_seg_enable_copy, crop_inpaint_enable], |
|
show_progress=False) |
|
|
|
return ui_process |
|
|
|
def process(self, p: StableDiffusionProcessing, *args): |
|
is_img2img = isinstance(p, StableDiffusionProcessingImg2Img) |
|
process_unit = SAMProcessUnit(args, is_img2img) |
|
process_unit.set_process_attributes(p) |
|
|
|
|
|
def on_after_component(component, **_kwargs): |
|
global txt2img_width |
|
if getattr(component, 'elem_id', None) == 'txt2img_width': |
|
txt2img_width = component |
|
return |
|
|
|
global txt2img_height |
|
if getattr(component, 'elem_id', None) == 'txt2img_height': |
|
txt2img_height = component |
|
return |
|
|
|
global img2img_width |
|
if getattr(component, 'elem_id', None) == 'img2img_width': |
|
img2img_width = component |
|
return |
|
|
|
global img2img_height |
|
if getattr(component, 'elem_id', None) == 'img2img_height': |
|
img2img_height = component |
|
return |
|
|
|
|
|
|
|
def on_ui_settings(): |
|
section = ('segment_anything', "Segment Anything") |
|
shared.opts.add_option("sam_use_local_groundingdino", shared.OptionInfo(False, "Use local groundingdino to bypass C++ problem", section=section)) |
|
|
|
|
|
script_callbacks.on_ui_settings(on_ui_settings) |
|
script_callbacks.on_after_component(on_after_component) |
|
|