stable-diffusion-webui
/
extensions
/sd-webui-controlnet
/scripts
/controlnet_ui
/controlnet_ui_group.py
import gradio as gr | |
import functools | |
from typing import List, Optional, Union, Dict, Callable | |
import numpy as np | |
import base64 | |
from scripts.utils import svg_preprocess | |
from scripts import ( | |
global_state, | |
external_code, | |
processor, | |
batch_hijack, | |
) | |
from scripts.processor import ( | |
preprocessor_sliders_config, | |
flag_preprocessor_resolution, | |
model_free_preprocessors, | |
preprocessor_filters, | |
HWC3, | |
) | |
from scripts.logging import logger | |
from scripts.controlnet_ui.openpose_editor import OpenposeEditor | |
from modules import shared | |
from modules.ui_components import FormRow | |
class ToolButton(gr.Button, gr.components.FormComponent): | |
"""Small button with single emoji as text, fits inside gradio forms""" | |
def __init__(self, **kwargs): | |
super().__init__(variant="tool", elem_classes=["cnet-toolbutton"], **kwargs) | |
def get_block_name(self): | |
return "button" | |
class UiControlNetUnit(external_code.ControlNetUnit): | |
"""The data class that stores all states of a ControlNetUnit.""" | |
def __init__( | |
self, | |
input_mode: batch_hijack.InputMode = batch_hijack.InputMode.SIMPLE, | |
batch_images: Optional[Union[str, List[external_code.InputImage]]] = None, | |
output_dir: str = "", | |
loopback: bool = False, | |
use_preview_as_input: bool = False, | |
generated_image: Optional[np.ndarray] = None, | |
enabled: bool = True, | |
module: Optional[str] = None, | |
model: Optional[str] = None, | |
weight: float = 1.0, | |
image: Optional[np.ndarray] = None, | |
*args, | |
**kwargs, | |
): | |
if use_preview_as_input and generated_image is not None: | |
input_image = generated_image | |
module = "none" | |
else: | |
input_image = image | |
super().__init__(enabled, module, model, weight, input_image, *args, **kwargs) | |
self.is_ui = True | |
self.input_mode = input_mode | |
self.batch_images = batch_images | |
self.output_dir = output_dir | |
self.loopback = loopback | |
class ControlNetUiGroup(object): | |
# Note: Change symbol hints mapping in `javascript/hints.js` when you change the symbol values. | |
refresh_symbol = "\U0001f504" # ๐ | |
switch_values_symbol = "\U000021C5" # โ | |
camera_symbol = "\U0001F4F7" # ๐ท | |
reverse_symbol = "\U000021C4" # โ | |
tossup_symbol = "\u2934" | |
trigger_symbol = "\U0001F4A5" # ๐ฅ | |
open_symbol = "\U0001F4DD" # ๐ | |
global_batch_input_dir = gr.Textbox( | |
label="Controlnet input directory", | |
placeholder="Leave empty to use input directory", | |
**shared.hide_dirs, | |
elem_id="controlnet_batch_input_dir", | |
) | |
img2img_batch_input_dir = None | |
img2img_batch_input_dir_callbacks = [] | |
img2img_batch_output_dir = None | |
img2img_batch_output_dir_callbacks = [] | |
txt2img_submit_button = None | |
img2img_submit_button = None | |
# Slider controls from A1111 WebUI. | |
txt2img_w_slider = None | |
txt2img_h_slider = None | |
img2img_w_slider = None | |
img2img_h_slider = None | |
def __init__( | |
self, | |
gradio_compat: bool, | |
infotext_fields: List[str], | |
default_unit: external_code.ControlNetUnit, | |
preprocessors: List[Callable], | |
): | |
self.gradio_compat = gradio_compat | |
self.infotext_fields = infotext_fields | |
self.default_unit = default_unit | |
self.preprocessors = preprocessors | |
self.webcam_enabled = False | |
self.webcam_mirrored = False | |
# Note: All gradio elements declared in `render` will be defined as member variable. | |
self.upload_tab = None | |
self.input_image = None | |
self.generated_image_group = None | |
self.generated_image = None | |
self.batch_tab = None | |
self.batch_image_dir = None | |
self.create_canvas = None | |
self.canvas_width = None | |
self.canvas_height = None | |
self.canvas_create_button = None | |
self.canvas_cancel_button = None | |
self.open_new_canvas_button = None | |
self.webcam_enable = None | |
self.webcam_mirror = None | |
self.send_dimen_button = None | |
self.enabled = None | |
self.lowvram = None | |
self.pixel_perfect = None | |
self.preprocessor_preview = None | |
self.type_filter = None | |
self.module = None | |
self.trigger_preprocessor = None | |
self.model = None | |
self.refresh_models = None | |
self.weight = None | |
self.guidance_start = None | |
self.guidance_end = None | |
self.advanced = None | |
self.processor_res = None | |
self.threshold_a = None | |
self.threshold_b = None | |
self.control_mode = None | |
self.resize_mode = None | |
self.loopback = None | |
self.use_preview_as_input = None | |
self.openpose_editor = None | |
def render(self, tabname: str, elem_id_tabname: str) -> None: | |
"""The pure HTML structure of a single ControlNetUnit. Calling this | |
function will populate `self` with all gradio element declared | |
in local scope. | |
Args: | |
tabname: | |
elem_id_tabname: | |
Returns: | |
None | |
""" | |
with gr.Tabs(): | |
with gr.Tab(label="Single Image") as self.upload_tab: | |
with gr.Row(elem_classes=["cnet-image-row"]).style(equal_height=True): | |
with gr.Group(elem_classes=["cnet-input-image-group"]): | |
self.input_image = gr.Image( | |
source="upload", | |
brush_radius=20, | |
mirror_webcam=False, | |
type="numpy", | |
tool="sketch", | |
elem_id=f"{elem_id_tabname}_{tabname}_input_image", | |
elem_classes=["cnet-image"], | |
) | |
with gr.Group( | |
visible=False, elem_classes=["cnet-generated-image-group"] | |
) as self.generated_image_group: | |
self.generated_image = gr.Image( | |
label="Preprocessor Preview", | |
elem_id=f"{elem_id_tabname}_{tabname}_generated_image", | |
elem_classes=["cnet-image"], | |
).style( | |
height=242 | |
) # Gradio's magic number. Only 242 works. | |
with gr.Group( | |
elem_classes=["cnet-generated-image-control-group"] | |
): | |
self.openpose_editor = OpenposeEditor() | |
preview_check_elem_id = f"{elem_id_tabname}_{tabname}_controlnet_preprocessor_preview_checkbox" | |
preview_close_button_js = f"document.querySelector('#{preview_check_elem_id} input[type=\\'checkbox\\']').click();" | |
gr.HTML( | |
value=f"""<a title="Close Preview" onclick="{preview_close_button_js}">Close</a>""", | |
visible=True, | |
elem_classes=["cnet-close-preview"], | |
) | |
with gr.Tab(label="Batch") as self.batch_tab: | |
self.batch_image_dir = gr.Textbox( | |
label="Input Directory", | |
placeholder="Leave empty to use img2img batch controlnet input directory", | |
elem_id=f"{elem_id_tabname}_{tabname}_batch_image_dir", | |
) | |
with gr.Accordion(label="Open New Canvas", visible=False) as self.create_canvas: | |
self.canvas_width = gr.Slider( | |
label="New Canvas Width", | |
minimum=256, | |
maximum=1024, | |
value=512, | |
step=64, | |
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_canvas_width", | |
) | |
self.canvas_height = gr.Slider( | |
label="New Canvas Height", | |
minimum=256, | |
maximum=1024, | |
value=512, | |
step=64, | |
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_canvas_height", | |
) | |
with gr.Row(): | |
self.canvas_create_button = gr.Button( | |
value="Create New Canvas", | |
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_canvas_create_button", | |
) | |
self.canvas_cancel_button = gr.Button( | |
value="Cancel", | |
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_canvas_cancel_button", | |
) | |
with gr.Row(elem_classes="controlnet_image_controls"): | |
gr.HTML( | |
value="<p>Set the preprocessor to [invert] If your image has white background and black lines.</p>", | |
elem_classes="controlnet_invert_warning", | |
) | |
self.open_new_canvas_button = ToolButton( | |
value=ControlNetUiGroup.open_symbol, | |
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_open_new_canvas_button", | |
) | |
self.webcam_enable = ToolButton( | |
value=ControlNetUiGroup.camera_symbol, | |
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_webcam_enable", | |
) | |
self.webcam_mirror = ToolButton( | |
value=ControlNetUiGroup.reverse_symbol, | |
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_webcam_mirror", | |
) | |
self.send_dimen_button = ToolButton( | |
value=ControlNetUiGroup.tossup_symbol, | |
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_send_dimen_button", | |
) | |
with FormRow( | |
elem_classes=["checkboxes-row", "controlnet_main_options"], | |
variant="compact", | |
): | |
self.enabled = gr.Checkbox( | |
label="Enable", | |
value=self.default_unit.enabled, | |
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_enable_checkbox", | |
elem_classes=['cnet-unit-enabled'], | |
) | |
self.lowvram = gr.Checkbox( | |
label="Low VRAM", | |
value=self.default_unit.low_vram, | |
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_low_vram_checkbox", | |
) | |
self.pixel_perfect = gr.Checkbox( | |
label="Pixel Perfect", | |
value=self.default_unit.pixel_perfect, | |
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_pixel_perfect_checkbox", | |
) | |
self.preprocessor_preview = gr.Checkbox( | |
label="Allow Preview", value=False, elem_id=preview_check_elem_id | |
) | |
self.use_preview_as_input = gr.Checkbox( | |
label="Preview as Input", | |
value=False, | |
elem_classes=["cnet-preview-as-input"], | |
visible=False, | |
) | |
if not shared.opts.data.get("controlnet_disable_control_type", False): | |
with gr.Row(elem_classes="controlnet_control_type"): | |
self.type_filter = gr.Radio( | |
list(preprocessor_filters.keys()), | |
label=f"Control Type", | |
value="All", | |
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_type_filter_radio", | |
elem_classes="controlnet_control_type_filter_group", | |
) | |
with gr.Row(elem_classes="controlnet_preprocessor_model"): | |
self.module = gr.Dropdown( | |
global_state.ui_preprocessor_keys, | |
label=f"Preprocessor", | |
value=self.default_unit.module, | |
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_preprocessor_dropdown", | |
) | |
self.trigger_preprocessor = ToolButton( | |
value=ControlNetUiGroup.trigger_symbol, | |
visible=True, | |
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_trigger_preprocessor", | |
) | |
self.model = gr.Dropdown( | |
list(global_state.cn_models.keys()), | |
label=f"Model", | |
value=self.default_unit.model, | |
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_model_dropdown", | |
) | |
self.refresh_models = ToolButton( | |
value=ControlNetUiGroup.refresh_symbol, | |
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_refresh_models", | |
) | |
with gr.Row(elem_classes="controlnet_weight_steps"): | |
self.weight = gr.Slider( | |
label=f"Control Weight", | |
value=self.default_unit.weight, | |
minimum=0.0, | |
maximum=2.0, | |
step=0.05, | |
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_control_weight_slider", | |
elem_classes="controlnet_control_weight_slider", | |
) | |
self.guidance_start = gr.Slider( | |
label="Starting Control Step", | |
value=self.default_unit.guidance_start, | |
minimum=0.0, | |
maximum=1.0, | |
interactive=True, | |
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_start_control_step_slider", | |
elem_classes="controlnet_start_control_step_slider", | |
) | |
self.guidance_end = gr.Slider( | |
label="Ending Control Step", | |
value=self.default_unit.guidance_end, | |
minimum=0.0, | |
maximum=1.0, | |
interactive=True, | |
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_ending_control_step_slider", | |
elem_classes="controlnet_ending_control_step_slider", | |
) | |
# advanced options | |
with gr.Column(visible=False) as self.advanced: | |
self.processor_res = gr.Slider( | |
label="Preprocessor resolution", | |
value=self.default_unit.processor_res, | |
minimum=64, | |
maximum=2048, | |
visible=False, | |
interactive=False, | |
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_preprocessor_resolution_slider", | |
) | |
self.threshold_a = gr.Slider( | |
label="Threshold A", | |
value=self.default_unit.threshold_a, | |
minimum=64, | |
maximum=1024, | |
visible=False, | |
interactive=False, | |
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_threshold_A_slider", | |
) | |
self.threshold_b = gr.Slider( | |
label="Threshold B", | |
value=self.default_unit.threshold_b, | |
minimum=64, | |
maximum=1024, | |
visible=False, | |
interactive=False, | |
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_threshold_B_slider", | |
) | |
self.control_mode = gr.Radio( | |
choices=[e.value for e in external_code.ControlMode], | |
value=self.default_unit.control_mode.value, | |
label="Control Mode", | |
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_control_mode_radio", | |
elem_classes="controlnet_control_mode_radio", | |
) | |
self.resize_mode = gr.Radio( | |
choices=[e.value for e in external_code.ResizeMode], | |
value=self.default_unit.resize_mode.value, | |
label="Resize Mode", | |
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_resize_mode_radio", | |
elem_classes="controlnet_resize_mode_radio", | |
) | |
self.loopback = gr.Checkbox( | |
label="[Loopback] Automatically send generated images to this ControlNet unit", | |
value=self.default_unit.loopback, | |
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_automatically_send_generated_images_checkbox", | |
elem_classes="controlnet_loopback_checkbox", | |
) | |
def register_send_dimensions(self, is_img2img: bool): | |
"""Register event handler for send dimension button.""" | |
def send_dimensions(image): | |
def closesteight(num): | |
rem = num % 8 | |
if rem <= 4: | |
return round(num - rem) | |
else: | |
return round(num + (8 - rem)) | |
if image: | |
interm = np.asarray(image.get("image")) | |
return closesteight(interm.shape[1]), closesteight(interm.shape[0]) | |
else: | |
return gr.Slider.update(), gr.Slider.update() | |
outputs = ( | |
[ | |
ControlNetUiGroup.img2img_w_slider, | |
ControlNetUiGroup.img2img_h_slider, | |
] | |
if is_img2img | |
else [ | |
ControlNetUiGroup.txt2img_w_slider, | |
ControlNetUiGroup.txt2img_h_slider, | |
] | |
) | |
self.send_dimen_button.click( | |
fn=send_dimensions, | |
inputs=[self.input_image], | |
outputs=outputs, | |
) | |
def register_webcam_toggle(self): | |
def webcam_toggle(): | |
self.webcam_enabled = not self.webcam_enabled | |
return { | |
"value": None, | |
"source": "webcam" if self.webcam_enabled else "upload", | |
"__type__": "update", | |
} | |
self.webcam_enable.click(webcam_toggle, inputs=None, outputs=self.input_image) | |
def register_webcam_mirror_toggle(self): | |
def webcam_mirror_toggle(): | |
self.webcam_mirrored = not self.webcam_mirrored | |
return {"mirror_webcam": self.webcam_mirrored, "__type__": "update"} | |
self.webcam_mirror.click( | |
webcam_mirror_toggle, inputs=None, outputs=self.input_image | |
) | |
def register_refresh_all_models(self): | |
def refresh_all_models(*inputs): | |
global_state.update_cn_models() | |
dd = inputs[0] | |
selected = dd if dd in global_state.cn_models else "None" | |
return gr.Dropdown.update( | |
value=selected, choices=list(global_state.cn_models.keys()) | |
) | |
self.refresh_models.click(refresh_all_models, self.model, self.model) | |
def register_build_sliders(self): | |
if not self.gradio_compat: | |
return | |
def build_sliders(module, pp): | |
grs = [] | |
module = global_state.get_module_basename(module) | |
if module not in preprocessor_sliders_config: | |
grs += [ | |
gr.update( | |
label=flag_preprocessor_resolution, | |
value=512, | |
minimum=64, | |
maximum=2048, | |
step=1, | |
visible=not pp, | |
interactive=not pp, | |
), | |
gr.update(visible=False, interactive=False), | |
gr.update(visible=False, interactive=False), | |
gr.update(visible=True), | |
] | |
else: | |
for slider_config in preprocessor_sliders_config[module]: | |
if isinstance(slider_config, dict): | |
visible = True | |
if slider_config["name"] == flag_preprocessor_resolution: | |
visible = not pp | |
grs.append( | |
gr.update( | |
label=slider_config["name"], | |
value=slider_config["value"], | |
minimum=slider_config["min"], | |
maximum=slider_config["max"], | |
step=slider_config["step"] | |
if "step" in slider_config | |
else 1, | |
visible=visible, | |
interactive=visible, | |
) | |
) | |
else: | |
grs.append(gr.update(visible=False, interactive=False)) | |
while len(grs) < 3: | |
grs.append(gr.update(visible=False, interactive=False)) | |
grs.append(gr.update(visible=True)) | |
if module in model_free_preprocessors: | |
grs += [ | |
gr.update(visible=False, value="None"), | |
gr.update(visible=False), | |
] | |
else: | |
grs += [gr.update(visible=True), gr.update(visible=True)] | |
return grs | |
inputs = [self.module, self.pixel_perfect] | |
outputs = [ | |
self.processor_res, | |
self.threshold_a, | |
self.threshold_b, | |
self.advanced, | |
self.model, | |
self.refresh_models, | |
] | |
self.module.change(build_sliders, inputs=inputs, outputs=outputs) | |
self.pixel_perfect.change(build_sliders, inputs=inputs, outputs=outputs) | |
if self.type_filter is not None: | |
def filter_selected(k, pp): | |
default_option = preprocessor_filters[k] | |
pattern = k.lower() | |
preprocessor_list = global_state.ui_preprocessor_keys | |
model_list = list(global_state.cn_models.keys()) | |
if pattern == "all": | |
return [ | |
gr.Dropdown.update(value="none", choices=preprocessor_list), | |
gr.Dropdown.update(value="None", choices=model_list), | |
] + build_sliders("none", pp) | |
filtered_preprocessor_list = [ | |
x | |
for x in preprocessor_list | |
if pattern in x.lower() or x.lower() == "none" | |
] | |
if pattern in ["canny", "lineart", "scribble", "mlsd"]: | |
filtered_preprocessor_list += [ | |
x for x in preprocessor_list if "invert" in x.lower() | |
] | |
filtered_model_list = [ | |
x for x in model_list if pattern in x.lower() or x.lower() == "none" | |
] | |
if default_option not in filtered_preprocessor_list: | |
default_option = filtered_preprocessor_list[0] | |
if len(filtered_model_list) == 1: | |
default_model = "None" | |
filtered_model_list = model_list | |
else: | |
default_model = filtered_model_list[1] | |
for x in filtered_model_list: | |
if "11" in x.split("[")[0]: | |
default_model = x | |
break | |
return [ | |
gr.Dropdown.update( | |
value=default_option, choices=filtered_preprocessor_list | |
), | |
gr.Dropdown.update( | |
value=default_model, choices=filtered_model_list | |
), | |
] + build_sliders(default_option, pp) | |
self.type_filter.change( | |
filter_selected, | |
inputs=[self.type_filter, self.pixel_perfect], | |
outputs=[self.module, self.model, *outputs], | |
) | |
def register_run_annotator(self, is_img2img: bool): | |
def run_annotator(image, module, pres, pthr_a, pthr_b, t2i_w, t2i_h, pp, rm): | |
if image is None: | |
return ( | |
gr.update(value=None, visible=True), | |
gr.update(), | |
*self.openpose_editor.update(''), | |
) | |
img = HWC3(image["image"]) | |
if not ( | |
(image["mask"][:, :, 0] == 0).all() | |
or (image["mask"][:, :, 0] == 255).all() | |
): | |
img = HWC3(image["mask"][:, :, 0]) | |
if "inpaint" in module: | |
color = HWC3(image["image"]) | |
alpha = image["mask"][:, :, 0:1] | |
img = np.concatenate([color, alpha], axis=2) | |
module = global_state.get_module_basename(module) | |
preprocessor = self.preprocessors[module] | |
if pp: | |
pres = external_code.pixel_perfect_resolution( | |
img, | |
target_H=t2i_h, | |
target_W=t2i_w, | |
resize_mode=external_code.resize_mode_from_value(rm), | |
) | |
class JsonAcceptor: | |
def __init__(self) -> None: | |
self.value = "" | |
def accept(self, json_string: str) -> None: | |
self.value = json_string | |
json_acceptor = JsonAcceptor() | |
logger.info(f"Preview Resolution = {pres}") | |
def is_openpose(module: str): | |
return "openpose" in module | |
# Only openpose preprocessor returns a JSON output, pass json_acceptor | |
# only when a JSON output is expected. This will make preprocessor cache | |
# work for all other preprocessors other than openpose ones. JSON acceptor | |
# instance are different every call, which means cache will never take | |
# effect. | |
# TODO: Maybe we should let `preprocessor` return a Dict to alleviate this issue? | |
# This requires changing all callsites though. | |
result, is_image = preprocessor( | |
img, | |
res=pres, | |
thr_a=pthr_a, | |
thr_b=pthr_b, | |
json_pose_callback=json_acceptor.accept | |
if is_openpose(module) | |
else None, | |
) | |
if "clip" in module: | |
result = processor.clip_vision_visualization(result) | |
is_image = True | |
if is_image: | |
result = external_code.visualize_inpaint_mask(result) | |
return ( | |
# Update to `generated_image` | |
gr.update(value=result, visible=True, interactive=False), | |
# preprocessor_preview | |
gr.update(value=True), | |
# openpose editor | |
*self.openpose_editor.update(json_acceptor.value), | |
) | |
return ( | |
# Update to `generated_image` | |
gr.update(value=None, visible=True), | |
# preprocessor_preview | |
gr.update(value=True), | |
# openpose editor | |
*self.openpose_editor.update(json_acceptor.value), | |
) | |
self.trigger_preprocessor.click( | |
fn=run_annotator, | |
inputs=[ | |
self.input_image, | |
self.module, | |
self.processor_res, | |
self.threshold_a, | |
self.threshold_b, | |
ControlNetUiGroup.img2img_w_slider | |
if is_img2img | |
else ControlNetUiGroup.txt2img_w_slider, | |
ControlNetUiGroup.img2img_h_slider | |
if is_img2img | |
else ControlNetUiGroup.txt2img_h_slider, | |
self.pixel_perfect, | |
self.resize_mode, | |
], | |
outputs=[ | |
self.generated_image, | |
self.preprocessor_preview, | |
*self.openpose_editor.outputs(), | |
], | |
) | |
def register_shift_preview(self): | |
def shift_preview(is_on): | |
return ( | |
# generated_image | |
gr.update() if is_on else gr.update(value=None), | |
# generated_image_group | |
gr.update(visible=is_on), | |
# use_preview_as_input, | |
gr.update(visible=is_on), | |
# download_pose_link | |
gr.update() if is_on else gr.update(value=None), | |
# modal edit button | |
gr.update() if is_on else gr.update(visible=False), | |
) | |
self.preprocessor_preview.change( | |
fn=shift_preview, | |
inputs=[self.preprocessor_preview], | |
outputs=[ | |
self.generated_image, | |
self.generated_image_group, | |
self.use_preview_as_input, | |
self.openpose_editor.download_link, | |
self.openpose_editor.modal, | |
], | |
) | |
def register_create_canvas(self): | |
self.open_new_canvas_button.click( | |
lambda: gr.Accordion.update(visible=True), | |
inputs=None, | |
outputs=self.create_canvas, | |
) | |
self.canvas_cancel_button.click( | |
lambda: gr.Accordion.update(visible=False), | |
inputs=None, | |
outputs=self.create_canvas, | |
) | |
def fn_canvas(h, w): | |
return np.zeros(shape=(h, w, 3), dtype=np.uint8) + 255, gr.Accordion.update( | |
visible=False | |
) | |
self.canvas_create_button.click( | |
fn=fn_canvas, | |
inputs=[self.canvas_height, self.canvas_width], | |
outputs=[self.input_image, self.create_canvas], | |
) | |
def register_callbacks(self, is_img2img: bool): | |
"""Register callbacks on the UI elements. | |
Args: | |
is_img2img: Whether ControlNet is under img2img. False when in txt2img mode. | |
Returns: | |
None | |
""" | |
self.register_send_dimensions(is_img2img) | |
self.register_webcam_toggle() | |
self.register_webcam_mirror_toggle() | |
self.register_refresh_all_models() | |
self.register_build_sliders() | |
self.register_run_annotator(is_img2img) | |
self.register_shift_preview() | |
self.register_create_canvas() | |
self.openpose_editor.register_callbacks( | |
self.generated_image, self.use_preview_as_input | |
) | |
def register_modules( | |
self, tabname: str, enabled, module, model, weight, guidance_start, guidance_end | |
): | |
self.infotext_fields.extend( | |
[ | |
(enabled, f"{tabname} Enabled"), | |
(module, f"{tabname} Preprocessor"), | |
(model, f"{tabname} Model"), | |
(weight, f"{tabname} Weight"), | |
(guidance_start, f"{tabname} Guidance Start"), | |
(guidance_end, f"{tabname} Guidance End"), | |
] | |
) | |
def render_and_register_unit(self, tabname: str, is_img2img: bool): | |
"""Render the invisible states elements for misc persistent | |
purposes. Register callbacks on loading/unloading the controlnet | |
unit and handle batch processes. | |
Args: | |
tabname: | |
is_img2img: | |
Returns: | |
The data class "ControlNetUnit" representing this ControlNetUnit. | |
""" | |
input_mode = gr.State(batch_hijack.InputMode.SIMPLE) | |
batch_image_dir_state = gr.State("") | |
output_dir_state = gr.State("") | |
unit_args = ( | |
input_mode, | |
batch_image_dir_state, | |
output_dir_state, | |
self.loopback, | |
# Non-persistent fields. | |
# Following inputs will not be persistent on `ControlNetUnit`. | |
# They are only used during object construction. | |
self.use_preview_as_input, | |
self.generated_image, | |
# End of Non-persistent fields. | |
self.enabled, | |
self.module, | |
self.model, | |
self.weight, | |
self.input_image, | |
self.resize_mode, | |
self.lowvram, | |
self.processor_res, | |
self.threshold_a, | |
self.threshold_b, | |
self.guidance_start, | |
self.guidance_end, | |
self.pixel_perfect, | |
self.control_mode, | |
) | |
self.register_modules( | |
tabname, | |
self.enabled, | |
self.module, | |
self.model, | |
self.weight, | |
self.guidance_start, | |
self.guidance_end, | |
) | |
self.input_image.preprocess = functools.partial( | |
svg_preprocess, preprocess=self.input_image.preprocess | |
) | |
unit = gr.State(self.default_unit) | |
for comp in unit_args: | |
event_subscribers = [] | |
if hasattr(comp, "edit"): | |
event_subscribers.append(comp.edit) | |
elif hasattr(comp, "click"): | |
event_subscribers.append(comp.click) | |
elif isinstance(comp, gr.Slider) and hasattr(comp, "release"): | |
event_subscribers.append(comp.release) | |
elif hasattr(comp, "change"): | |
event_subscribers.append(comp.change) | |
if hasattr(comp, "clear"): | |
event_subscribers.append(comp.clear) | |
for event_subscriber in event_subscribers: | |
event_subscriber( | |
fn=UiControlNetUnit, inputs=list(unit_args), outputs=unit | |
) | |
# keep input_mode in sync | |
def ui_controlnet_unit_for_input_mode(input_mode, *args): | |
args = list(args) | |
args[0] = input_mode | |
return input_mode, UiControlNetUnit(*args) | |
for input_tab in ( | |
(self.upload_tab, batch_hijack.InputMode.SIMPLE), | |
(self.batch_tab, batch_hijack.InputMode.BATCH), | |
): | |
input_tab[0].select( | |
fn=ui_controlnet_unit_for_input_mode, | |
inputs=[gr.State(input_tab[1])] + list(unit_args), | |
outputs=[input_mode, unit], | |
) | |
def determine_batch_dir(batch_dir, fallback_dir, fallback_fallback_dir): | |
if batch_dir: | |
return batch_dir | |
elif fallback_dir: | |
return fallback_dir | |
else: | |
return fallback_fallback_dir | |
# keep batch_dir in sync with global batch input textboxes | |
def subscribe_for_batch_dir(): | |
batch_dirs = [ | |
self.batch_image_dir, | |
ControlNetUiGroup.global_batch_input_dir, | |
ControlNetUiGroup.img2img_batch_input_dir, | |
] | |
for batch_dir_comp in batch_dirs: | |
subscriber = getattr(batch_dir_comp, "blur", None) | |
if subscriber is None: | |
continue | |
subscriber( | |
fn=determine_batch_dir, | |
inputs=batch_dirs, | |
outputs=[batch_image_dir_state], | |
queue=False, | |
) | |
if ControlNetUiGroup.img2img_batch_input_dir is None: | |
# we are too soon, subscribe later when available | |
ControlNetUiGroup.img2img_batch_input_dir_callbacks.append( | |
subscribe_for_batch_dir | |
) | |
else: | |
subscribe_for_batch_dir() | |
# keep output_dir in sync with global batch output textbox | |
def subscribe_for_output_dir(): | |
ControlNetUiGroup.img2img_batch_output_dir.blur( | |
fn=lambda a: a, | |
inputs=[ControlNetUiGroup.img2img_batch_output_dir], | |
outputs=[output_dir_state], | |
queue=False, | |
) | |
if ControlNetUiGroup.img2img_batch_input_dir is None: | |
# we are too soon, subscribe later when available | |
ControlNetUiGroup.img2img_batch_output_dir_callbacks.append( | |
subscribe_for_output_dir | |
) | |
else: | |
subscribe_for_output_dir() | |
( | |
ControlNetUiGroup.img2img_submit_button | |
if is_img2img | |
else ControlNetUiGroup.txt2img_submit_button | |
).click( | |
fn=UiControlNetUnit, | |
inputs=list(unit_args), | |
outputs=unit, | |
queue=False, | |
) | |
return unit | |
def on_after_component(component, **_kwargs): | |
elem_id = getattr(component, "elem_id", None) | |
if elem_id == "txt2img_generate": | |
ControlNetUiGroup.txt2img_submit_button = component | |
return | |
if elem_id == "img2img_generate": | |
ControlNetUiGroup.img2img_submit_button = component | |
return | |
if elem_id == "img2img_batch_input_dir": | |
ControlNetUiGroup.img2img_batch_input_dir = component | |
for callback in ControlNetUiGroup.img2img_batch_input_dir_callbacks: | |
callback() | |
return | |
if elem_id == "img2img_batch_output_dir": | |
ControlNetUiGroup.img2img_batch_output_dir = component | |
for callback in ControlNetUiGroup.img2img_batch_output_dir_callbacks: | |
callback() | |
return | |
if elem_id == "img2img_batch_inpaint_mask_dir": | |
ControlNetUiGroup.global_batch_input_dir.render() | |
return | |
if elem_id == "txt2img_width": | |
ControlNetUiGroup.txt2img_w_slider = component | |
return | |
if elem_id == "txt2img_height": | |
ControlNetUiGroup.txt2img_h_slider = component | |
return | |
if elem_id == "img2img_width": | |
ControlNetUiGroup.img2img_w_slider = component | |
return | |
if elem_id == "img2img_height": | |
ControlNetUiGroup.img2img_h_slider = component | |
return | |