File size: 5,307 Bytes
6ff6c37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from typing import List, Dict, Any
import requests
import nltk

# Download required NLTK models
nltk.download("averaged_perceptron_tagger")
nltk.download("averaged_perceptron_tagger_eng")

# Define your model name
NEL_MODEL = "nel-mgenre-multilingual"

class NelPipeline:
    def __init__(self, model_name: str):
        self.model_name = model_name
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(self.device)

    def preprocess(self, text: str):
        start_token = "[START]"
        end_token = "[END]"

        if start_token in text and end_token in text:
            start_idx = text.index(start_token) + len(start_token)
            end_idx = text.index(end_token)
            enclosed_entity = text[start_idx:end_idx].strip()
            lOffset = start_idx
            rOffset = end_idx
        else:
            enclosed_entity = None
            lOffset = None
            rOffset = None

        outputs = self.model.generate(
            **self.tokenizer([text], return_tensors="pt").to(self.device),
            num_beams=1,
            num_return_sequences=1,
            max_new_tokens=30,
            return_dict_in_generate=True,
            output_scores=True,
        )
        wikipedia_prediction = self.tokenizer.batch_decode(
            outputs.sequences, skip_special_tokens=True
        )[0]

        transition_scores = self.model.compute_transition_scores(
            outputs.sequences, outputs.scores, normalize_logits=True
        )
        log_prob_sum = sum(transition_scores[0])
        sequence_confidence = torch.exp(log_prob_sum)
        percentage = sequence_confidence.cpu().numpy() * 100.0

        return wikipedia_prediction, enclosed_entity, lOffset, rOffset, percentage

    def postprocess(self, outputs):
        wikipedia_prediction, enclosed_entity, lOffset, rOffset, percentage = outputs

        qid, language = get_wikipedia_page_props(wikipedia_prediction)
        title, url = get_wikipedia_title(qid, language=language)

        results = [
            {
                "surface": enclosed_entity,
                "wkd_id": qid,
                "wkpedia_pagename": title,
                "wkpedia_url": url,
                "type": "UNK",
                "confidence_nel": round(percentage, 2),
                "lOffset": lOffset,
                "rOffset": rOffset,
            }
        ]
        return results


def get_wikipedia_page_props(input_str: str):
    if ">>" not in input_str:
        page_name = input_str
        language = "en"
    else:
        try:
            page_name, language = input_str.split(">>")
            page_name = page_name.strip()
            language = language.strip()
        except:
            page_name = input_str
            language = "en"
    wikipedia_url = f"https://{language}.wikipedia.org/w/api.php"
    wikipedia_params = {
        "action": "query",
        "prop": "pageprops",
        "format": "json",
        "titles": page_name,
    }

    qid = "NIL"
    try:
        response = requests.get(wikipedia_url, params=wikipedia_params)
        response.raise_for_status()
        data = response.json()

        if "pages" in data["query"]:
            page_id = list(data["query"]["pages"].keys())[0]

            if "pageprops" in data["query"]["pages"][page_id]:
                page_props = data["query"]["pages"][page_id]["pageprops"]

                if "wikibase_item" in page_props:
                    return page_props["wikibase_item"], language
                else:
                    return qid, language
            else:
                return qid, language
        else:
            return qid, language
    except Exception as e:
        return qid, language


def get_wikipedia_title(qid, language="en"):
    url = f"https://www.wikidata.org/w/api.php"
    params = {
        "action": "wbgetentities",
        "format": "json",
        "ids": qid,
        "props": "sitelinks/urls",
        "sitefilter": f"{language}wiki",
    }

    response = requests.get(url, params=params)
    try:
        response.raise_for_status()
        data = response.json()
    except requests.exceptions.RequestException as e:
        return "NIL", "None"
    except ValueError as e:
        return "NIL", "None"

    try:
        title = data["entities"][qid]["sitelinks"][f"{language}wiki"]["title"]
        url = data["entities"][qid]["sitelinks"][f"{language}wiki"]["url"]
        return title, url
    except KeyError:
        return "NIL", "None"


class EndpointHandler:
    def __init__(self, path: str = None):
        # Initialize the NelPipeline with the specified model
        self.pipeline = NelPipeline(NEL_MODEL)

    def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
        # Process incoming data
        inputs = data.get("inputs", "")
        if not isinstance(inputs, str):
            raise ValueError("Input must be a string.")

        # Preprocess, forward, and postprocess
        preprocessed = self.pipeline.preprocess(inputs)
        results = self.pipeline.postprocess(preprocessed)

        return results