File size: 9,521 Bytes
a4d2db0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
# coding=utf-8
# Copyright 2023 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
# Copyright 2023 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" JAIS configuration"""
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class JAISConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`JAISModel`]. It is used to instantiate a JAIS
model according to the specified arguments, defining the model architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50257):
Vocabulary size of the JAIS model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`JAISModel`].
n_positions (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
n_embd (`int`, *optional*, defaults to 768):
Dimensionality of the embeddings and hidden states.
n_layer (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
n_head (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
n_inner (`int`, *optional*, defaults to None):
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
activation_function (`str`, *optional*, defaults to `"gelu"`):
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new", "swiglu"]`.
resid_pdrop (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
embd_pdrop (`float`, *optional*, defaults to 0.1):
The dropout ratio for the embeddings.
attn_pdrop (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
The epsilon to use in the layer normalization layers.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
scale_attn_weights (`bool`, *optional*, defaults to `True`):
Scale attention weights by dividing by sqrt(hidden_size)..
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`):
Whether to additionally scale attention weights by `1 / layer_idx + 1`.
reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`):
Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention
dot-product/softmax to float() when training with mixed precision.
position_embedding_type (`str`, *optional*, defaults to `"learned"`):
Positional embedding can be either `"alibi"` or `"learned"`.
mup_width_scale (`float`, *optional*, defaults to 1.0):
muP parameter to scale learning rate and initializers. Calculated as (`d_model,0 / d_model`), where
`d_model` is the model's width and `d_model,0` is the proxy model's width.
mup_embeddings_scale (`float`, *optional*, defaults to 1.0):
muP parameter to scale token and position embeddings.
mup_output_alpha (`float`, *optional*, defaults to 1.0):
muP parameter to scale output logits (`output_logits_scale = mup_output_alpha * mup_width_scale`).
mup_scale_qk_dot_by_d (`bool`, *optional*, defaults to `False`):
Scale attention weights by dividing by hidden_size instead of sqrt(hidden_size). Need to set
scale_attn_weights to `True` as well.
alibi_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for ALiBi embeddings. Currently only supports linear
scaling strategy. Can specify either the scaling `factor` (must be a float greater than 1) for fixed scaling
or `train_seq_len` for dynamic scaling on input samples with sequence length > `train_seq_len`. The expected
formats are `{"type": strategy name, "factor": scaling factor}` or
`{"type": strategy name, "train_seq_len": training sequence length}`.
Example:
```python
>>> from transformers import JAISConfig, JAISModel
>>> # Initializing a JAIS configuration
>>> configuration = JAISConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = JAISModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "jais"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__(
self,
vocab_size=50257,
n_positions=1024,
n_embd=768,
n_layer=12,
n_head=12,
n_inner=None,
activation_function="gelu_new",
resid_pdrop=0.1,
embd_pdrop=0.1,
attn_pdrop=0.1,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
scale_attn_weights=True,
use_cache=True,
bos_token_id=50256,
eos_token_id=50256,
scale_attn_by_inverse_layer_idx=False,
reorder_and_upcast_attn=False,
position_embedding_type="learned",
mup_width_scale=1.0,
mup_embeddings_scale=1.0,
mup_output_alpha=1.0,
mup_scale_qk_dot_by_d=False,
alibi_scaling=None,
**kwargs,
):
self.vocab_size = vocab_size
self.n_positions = n_positions
self.n_embd = n_embd
self.n_layer = n_layer
self.n_head = n_head
self.n_inner = n_inner
self.activation_function = activation_function
self.resid_pdrop = resid_pdrop
self.embd_pdrop = embd_pdrop
self.attn_pdrop = attn_pdrop
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
self.scale_attn_weights = scale_attn_weights
self.use_cache = use_cache
self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
self.reorder_and_upcast_attn = reorder_and_upcast_attn
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.position_embedding_type = position_embedding_type
self.mup_width_scale = mup_width_scale
self.mup_embeddings_scale = mup_embeddings_scale
self.mup_output_alpha = mup_output_alpha
self.mup_scale_qk_dot_by_d = mup_scale_qk_dot_by_d
self.alibi_scaling = alibi_scaling
self._alibi_scaling_validation()
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
def _alibi_scaling_validation(self):
"""
Validate the `alibi_scaling` configuration.
"""
if self.alibi_scaling is None:
return
if not isinstance(self.alibi_scaling, dict) or len(self.alibi_scaling) != 2:
raise ValueError(
"`alibi_scaling` must be a dictionary with two fields, `type` and `factor` or `type` and `train_seq_len`, "
f"got {self.alibi_scaling}"
)
alibi_scaling_type = self.alibi_scaling.get("type", None)
alibi_scaling_factor = self.alibi_scaling.get("factor", None)
alibi_dynamic_scaling = self.alibi_scaling.get("train_seq_len", None)
if alibi_scaling_type is None or alibi_scaling_type != "linear":
raise ValueError(
f"`alibi_scaling`'s type field must be 'linear', got {alibi_scaling_type}"
)
if alibi_scaling_factor is not None:
if not isinstance(alibi_scaling_factor, float) or alibi_scaling_factor <= 1.0:
raise ValueError(f"`alibi_scaling`'s factor field must be a float > 1.0, got {alibi_scaling_factor}")
if alibi_dynamic_scaling is not None:
if not isinstance(alibi_dynamic_scaling, int) or alibi_dynamic_scaling <= 1:
raise ValueError(f"`alibi_scaling`'s `train_seq_len` field must be an integer > 1, got {alibi_dynamic_scaling}")
|