rulixiang commited on
Commit
04a59ec
Β·
1 Parent(s): 79b4131

update M2-Reasoning

Browse files
Files changed (1) hide show
  1. README.md +13 -13
README.md CHANGED
@@ -1,22 +1,22 @@
1
- # Ming-Reasoning: Empowering MLLMs with Unified General and Spatial Reasoning
2
 
3
- πŸ“– [Technical Report]() | πŸ€— [Hugging Face](https://huggingface.co/inclusionAI/Ming-Reasoning)| πŸ€– [ModelScope](https://www.modelscope.cn/models/inclusionAI/Ming-Reasoning)
4
 
5
  ## Introduction
6
 
7
- We introduce Ming-Reasoning-7B, a model designed to excel in both general and spatial reasoning. Our approach integrates two key innovations: (1) a novel data pipeline that generates 294.2K high-quality data samples (168K for cold-start fine-tuning and 126.2K for RLVR), which feature logically coherent reasoning trajectories and have undergone comprehensive assessment; and (2) a dynamic multi-task training strategy with step-wise optimization to mitigate conflicts between data, and task-specific rewards for delivering tailored incentive signals. This combination of curated data and advanced training allows Ming-Reasoning-7B to set a new state-of-the-art (SOTA) across 8 benchmarks, showcasing superior performance in both general and spatial reasoning domains.
8
  ![](assets/teaser.png)
9
 
10
  ## πŸ“Œ Updates
11
 
12
  <!-- - [2025.07.08] πŸ”₯ Our Technical Report is in public on arxiv. -->
13
- - [2025.07.07] πŸ”₯ We release Ming-Reasoning πŸ€— [Hugging Face](https://huggingface.co/inclusionAI/Ming-Reasoning) and πŸ€– [ModelScope](https://www.modelscope.cn/models/inclusionAI/Ming-Reasoning).
14
 
15
  ## Key Features
16
 
17
  - A High-quality Data Construction Pipeline: We design and implement a multi-stage data synthesis and curation pipeline that generates vast amounts of reasoning data.
18
  - A Dynamic Multi-Task Training Strategy: We propose a sophisticated training strategy that effectively handles data heterogeneity. It features step-wise dynamic optimization to mitigate conflicts between different data sources and a task-specific reward formulation to provide tailored incentive signals.
19
- - Unified General and Spatial Reasoning Model: We propose Ming-Reasoning-7B, an MLLM uniquely engineered for both abstract and spatial reasoning. Extensive evaluations on 8 distinctbenchmarks demonstrate that, by leveraging our custom data and training pipelines, Ming-Reasoning establishes new state-of-the-art (SOTA) results across both general and spatial reasoning domains.
20
 
21
  ## Evaluation
22
 
@@ -42,8 +42,8 @@ capability they measure:
42
  |Ovis2-8B |71.8 |25.9| 42.3 |20.4 |27.2 |39.4| 37.8|
43
  |***Our Models***|
44
  |Base Model |70.2| 25.9| 30.5| 20.2| 27.2| 37.8| 35.5|
45
- |Ming-Reasoning-CI-7B| 71.7| 29.2| 42.1| 25.0 |42.8| 46.8 |42.9 (+7.4)|
46
- |Ming-Reasoning-7B | **75.0** |31.5| 44.7 |**26.8** |41.8 |50.0 |**45.0 (+9.5)**|
47
 
48
  - Spatial Reasoning: We assess this skill using 2 benchmarks: CV-Bench and VSI-Bench
49
  - CV-Bench:
@@ -58,7 +58,7 @@ capability they measure:
58
  | Qwen2.5-VL-7B-Instruct | 65.2 | 86.6 | 70.6 | 79.8 | 75.0 |
59
  | LLava-NEXT-Video-7B | 59.3 | 77.0 | 71.3 | 54.7 | 65.2 |
60
  | ***Our Models*** | | | | | |
61
- | Ming-Reasoning-7B | 66.6 | **92.8** | **89.3** | **84.3** | **82.3** |
62
 
63
  - VSI-Bench:
64
 
@@ -73,11 +73,11 @@ capability they measure:
73
  | Qwen2.5-VL-7B-Instruct| 37.7 | 20.1 | 49.7 | 37.4 | 38.5 | 40.4 | 31.4 | 32.0 | 35.9 |
74
  | LLava-NeXT-Video-7B| 48.5 | 14.0 | 47.8 | 24.2 | 43.5 | 42.4 | **34.0** | 30.6 | 35.6 |
75
  | ***Our Models*** | | | | | | | | | |
76
- | Ming-Reasoning-7B | 41.0 | 34.0 | **60.9** | **55.4** | 40.7 | **47.3** | 29.9 | 28.8 | **42.3** |
77
 
78
  ## Installation
79
 
80
- Please download our model following Model Downloads, then you can refer to the following codes to run Ming-Reasoning model.
81
  The basic environment is `python=3.10`, `torch=2.6.0+cu124`, `transformers=4.49.0`
82
  ## Example Usage
83
 
@@ -191,7 +191,7 @@ class BailingMMInfer:
191
 
192
  if __name__ == '__main__':
193
  parser = argparse.ArgumentParser()
194
- parser.add_argument('--model_name_or_path', type=str, default="inclusionAI/Ming-Reasoning")
195
  parser.add_argument('--max_pixels', type=int, default=401408)
196
  parser.add_argument('--min_pixels', type=int, default=401408)
197
  parser.add_argument('--max_new_tokens', type=int, default=4096)
@@ -294,8 +294,8 @@ This code repository is licensed under the MIT License, and the Legal Disclaimer
294
  If you find our work helpful, feel free to give us a cite.
295
 
296
  ```
297
- @misc{Mingreasoning2025,
298
- title = {Ming-Reasoning: Empowering MLLMs with Unified General and Spatial Reasoning},
299
  author = {Inclusion AI},
300
  year = {2025},
301
  archivePrefix = {arXiv},
 
1
+ # M2-Reasoning: Empowering MLLMs with Unified General and Spatial Reasoning
2
 
3
+ πŸ“– [Technical Report]() | πŸ€— [Hugging Face](https://huggingface.co/inclusionAI/M2-Reasoning)| πŸ€– [ModelScope](https://www.modelscope.cn/models/inclusionAI/M2-Reasoning)
4
 
5
  ## Introduction
6
 
7
+ We introduce M2-Reasoning-7B, a model designed to excel in both general and spatial reasoning. Our approach integrates two key innovations: (1) a novel data pipeline that generates 294.2K high-quality data samples (168K for cold-start fine-tuning and 126.2K for RLVR), which feature logically coherent reasoning trajectories and have undergone comprehensive assessment; and (2) a dynamic multi-task training strategy with step-wise optimization to mitigate conflicts between data, and task-specific rewards for delivering tailored incentive signals. This combination of curated data and advanced training allows M2-Reasoning-7B to set a new state-of-the-art (SOTA) across 8 benchmarks, showcasing superior performance in both general and spatial reasoning domains.
8
  ![](assets/teaser.png)
9
 
10
  ## πŸ“Œ Updates
11
 
12
  <!-- - [2025.07.08] πŸ”₯ Our Technical Report is in public on arxiv. -->
13
+ - [2025.07.07] πŸ”₯ We release M2-Reasoning on πŸ€— [Hugging Face](https://huggingface.co/inclusionAI/M2-Reasoning) and πŸ€– [ModelScope](https://www.modelscope.cn/models/inclusionAI/M2-Reasoning).
14
 
15
  ## Key Features
16
 
17
  - A High-quality Data Construction Pipeline: We design and implement a multi-stage data synthesis and curation pipeline that generates vast amounts of reasoning data.
18
  - A Dynamic Multi-Task Training Strategy: We propose a sophisticated training strategy that effectively handles data heterogeneity. It features step-wise dynamic optimization to mitigate conflicts between different data sources and a task-specific reward formulation to provide tailored incentive signals.
19
+ - Unified General and Spatial Reasoning Model: We propose M2-Reasoning-7B, an MLLM uniquely engineered for both abstract and spatial reasoning. Extensive evaluations on 8 distinctbenchmarks demonstrate that, by leveraging our custom data and training pipelines, M2-Reasoning establishes new state-of-the-art (SOTA) results across both general and spatial reasoning domains.
20
 
21
  ## Evaluation
22
 
 
42
  |Ovis2-8B |71.8 |25.9| 42.3 |20.4 |27.2 |39.4| 37.8|
43
  |***Our Models***|
44
  |Base Model |70.2| 25.9| 30.5| 20.2| 27.2| 37.8| 35.5|
45
+ |M2-Reasoning-CI-7B| 71.7| 29.2| 42.1| 25.0 |42.8| 46.8 |42.9 (+7.4)|
46
+ |M2-Reasoning-7B | **75.0** |31.5| 44.7 |**26.8** |41.8 |50.0 |**45.0 (+9.5)**|
47
 
48
  - Spatial Reasoning: We assess this skill using 2 benchmarks: CV-Bench and VSI-Bench
49
  - CV-Bench:
 
58
  | Qwen2.5-VL-7B-Instruct | 65.2 | 86.6 | 70.6 | 79.8 | 75.0 |
59
  | LLava-NEXT-Video-7B | 59.3 | 77.0 | 71.3 | 54.7 | 65.2 |
60
  | ***Our Models*** | | | | | |
61
+ | M2-Reasoning-7B | 66.6 | **92.8** | **89.3** | **84.3** | **82.3** |
62
 
63
  - VSI-Bench:
64
 
 
73
  | Qwen2.5-VL-7B-Instruct| 37.7 | 20.1 | 49.7 | 37.4 | 38.5 | 40.4 | 31.4 | 32.0 | 35.9 |
74
  | LLava-NeXT-Video-7B| 48.5 | 14.0 | 47.8 | 24.2 | 43.5 | 42.4 | **34.0** | 30.6 | 35.6 |
75
  | ***Our Models*** | | | | | | | | | |
76
+ | M2-Reasoning-7B | 41.0 | 34.0 | **60.9** | **55.4** | 40.7 | **47.3** | 29.9 | 28.8 | **42.3** |
77
 
78
  ## Installation
79
 
80
+ Please download our model following Model Downloads, then you can refer to the following codes to run M2-Reasoning model.
81
  The basic environment is `python=3.10`, `torch=2.6.0+cu124`, `transformers=4.49.0`
82
  ## Example Usage
83
 
 
191
 
192
  if __name__ == '__main__':
193
  parser = argparse.ArgumentParser()
194
+ parser.add_argument('--model_name_or_path', type=str, default="inclusionAI/M2-Reasoning")
195
  parser.add_argument('--max_pixels', type=int, default=401408)
196
  parser.add_argument('--min_pixels', type=int, default=401408)
197
  parser.add_argument('--max_new_tokens', type=int, default=4096)
 
294
  If you find our work helpful, feel free to give us a cite.
295
 
296
  ```
297
+ @misc{M2reasoning2025,
298
+ title = {M2-Reasoning: Empowering MLLMs with Unified General and Spatial Reasoning},
299
  author = {Inclusion AI},
300
  year = {2025},
301
  archivePrefix = {arXiv},