Commit
·
f101dce
1
Parent(s):
ce489d3
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama2
|
3 |
+
datasets:
|
4 |
+
- indiejoseph/ted-transcriptions-cantonese
|
5 |
+
- indiejoseph/wikipedia-zh-yue-qa
|
6 |
+
- indiejoseph/wikipedia-zh-yue-summaries
|
7 |
+
- indiejoseph/ted-translation-zhhk-zhcn
|
8 |
+
- OpenAssistant/oasst1
|
9 |
+
language:
|
10 |
+
- yue
|
11 |
+
---
|
12 |
+
|
13 |
+
# Cantonese Llama 2 7b v1
|
14 |
+
|
15 |
+
## Model Introduction
|
16 |
+
This model has been fine-tuned on [cantonese-llama-2-7b](https://huggingface.co/indiejoseph/cantonese-llama-2-7b), which is a second pretrained model based on Meta's llama2
|
17 |
+
The fine-tuning process utilized a dataset consisting of [OpenAssistant/oasst1](https://huggingface.co/datasets/OpenAssistant/oasst1)(with all Simplified Chinese removed),[indiejoseph/ted-transcriptions-cantonese](https://huggingface.co/datasets/indiejoseph/ted-transcriptions-cantonese), [indiejoseph/wikipedia-zh-yue-qa](https://huggingface.co/datasets/indiejoseph/wikipedia-zh-yue-qa), [indiejoseph/wikipedia-zh-yue-summaries](https://huggingface.co/datasets/indiejoseph/wikipedia-zh-yue-summaries), [indiejoseph/ted-translation-zhhk-zhcn](https://huggingface.co/datasets/indiejoseph/ted-translation-zhhk-zhcn).
|
18 |
+
|
19 |
+
## Usage
|
20 |
+
```python
|
21 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
22 |
+
|
23 |
+
model = AutoModelForCausalLM.from_pretrained("cantonese-llama-2-7b-oasst-v1/", device_map="auto")
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained("cantonese-llama-2-7b-oasst-v1/")
|
25 |
+
|
26 |
+
template = """A chat between a curious user and an artificial intelligence assistant.
|
27 |
+
The assistant gives helpful, detailed, and polite answers to the user's questions.
|
28 |
+
|
29 |
+
Human: {}
|
30 |
+
|
31 |
+
Assistant:
|
32 |
+
"""
|
33 |
+
|
34 |
+
tokenizer.pad_token = "[PAD]"
|
35 |
+
tokenizer.padding_side = "left"
|
36 |
+
|
37 |
+
def inference(input_texts):
|
38 |
+
inputs = tokenizer([template.format(text) for text in input_texts], return_tensors="pt", padding=True, truncation=True, max_length=512).to('cuda')
|
39 |
+
|
40 |
+
# Generate
|
41 |
+
generate_ids = model.generate(**inputs, max_new_tokens=512)
|
42 |
+
outputs = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
43 |
+
outputs = [out.split('Assistant:')[1].strip() for out in outputs]
|
44 |
+
|
45 |
+
return outputs
|
46 |
+
|
47 |
+
|
48 |
+
print(inference("香港現任特首係邊個?"))
|
49 |
+
# Output: 香港現任特首係李家超。
|
50 |
+
|
51 |
+
print(inference("2019年香港發生咗咩事?"))
|
52 |
+
# Output: 2019年香港發生咗反修例運動。
|
53 |
+
```
|