indudesane commited on
Commit
0fb40a5
·
verified ·
1 Parent(s): 0ad966c

End of training

Browse files
README.md CHANGED
@@ -15,12 +15,17 @@ should probably proofread and complete it, then remove this comment. -->
15
 
16
  This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the None dataset.
17
  It achieves the following results on the evaluation set:
18
- - Loss: 0.0000
19
- - Ign: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933}
20
- - Overall Precision: 1.0
21
- - Overall Recall: 1.0
22
- - Overall F1: 1.0
23
- - Overall Accuracy: 1.0
 
 
 
 
 
24
 
25
  ## Model description
26
 
@@ -50,20 +55,20 @@ The following hyperparameters were used during training:
50
 
51
  ### Training results
52
 
53
- | Training Loss | Epoch | Step | Validation Loss | Ign | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
54
- |:-------------:|:--------:|:----:|:---------------:|:------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
55
- | 0.032 | 18.1818 | 200 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} | 1.0 | 1.0 | 1.0 | 1.0 |
56
- | 0.0 | 36.3636 | 400 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} | 1.0 | 1.0 | 1.0 | 1.0 |
57
- | 0.0 | 54.5455 | 600 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} | 1.0 | 1.0 | 1.0 | 1.0 |
58
- | 0.0 | 72.7273 | 800 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} | 1.0 | 1.0 | 1.0 | 1.0 |
59
- | 0.0 | 90.9091 | 1000 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} | 1.0 | 1.0 | 1.0 | 1.0 |
60
- | 0.0 | 109.0909 | 1200 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} | 1.0 | 1.0 | 1.0 | 1.0 |
61
- | 0.0 | 127.2727 | 1400 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} | 1.0 | 1.0 | 1.0 | 1.0 |
62
- | 0.0 | 145.4545 | 1600 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} | 1.0 | 1.0 | 1.0 | 1.0 |
63
- | 0.0 | 163.6364 | 1800 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} | 1.0 | 1.0 | 1.0 | 1.0 |
64
- | 0.0 | 181.8182 | 2000 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} | 1.0 | 1.0 | 1.0 | 1.0 |
65
- | 0.0 | 200.0 | 2200 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} | 1.0 | 1.0 | 1.0 | 1.0 |
66
- | 0.0 | 218.1818 | 2400 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} | 1.0 | 1.0 | 1.0 | 1.0 |
67
 
68
 
69
  ### Framework versions
 
15
 
16
  This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the None dataset.
17
  It achieves the following results on the evaluation set:
18
+ - Loss: 0.4277
19
+ - Fsc Code: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22}
20
+ - Ame: {'precision': 0.391304347826087, 'recall': 0.42857142857142855, 'f1': 0.4090909090909091, 'number': 42}
21
+ - Ccount No: {'precision': 0.75, 'recall': 0.5, 'f1': 0.6, 'number': 6}
22
+ - Ign: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5}
23
+ - Mount: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13}
24
+ - Ther: {'precision': 0.5287356321839081, 'recall': 0.5348837209302325, 'f1': 0.5317919075144507, 'number': 86}
25
+ - Overall Precision: 0.6045
26
+ - Overall Recall: 0.6149
27
+ - Overall F1: 0.6097
28
+ - Overall Accuracy: 0.9431
29
 
30
  ## Model description
31
 
 
55
 
56
  ### Training results
57
 
58
+ | Training Loss | Epoch | Step | Validation Loss | Fsc Code | Ame | Ccount No | Ign | Mount | Ther | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
59
+ |:-------------:|:-----:|:----:|:---------------:|:----------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------:|:----------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
60
+ | 0.1559 | 20.0 | 200 | 0.2349 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} | {'precision': 0.3448275862068966, 'recall': 0.47619047619047616, 'f1': 0.39999999999999997, 'number': 42} | {'precision': 0.75, 'recall': 0.5, 'f1': 0.6, 'number': 6} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 0.4329896907216495, 'recall': 0.4883720930232558, 'f1': 0.45901639344262296, 'number': 86} | 0.5155 | 0.5747 | 0.5435 | 0.9376 |
61
+ | 0.0138 | 40.0 | 400 | 0.2607 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} | {'precision': 0.3148148148148148, 'recall': 0.40476190476190477, 'f1': 0.3541666666666667, 'number': 42} | {'precision': 0.75, 'recall': 0.5, 'f1': 0.6, 'number': 6} | {'precision': 1.0, 'recall': 0.8, 'f1': 0.888888888888889, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 0.5, 'recall': 0.5465116279069767, 'f1': 0.5222222222222221, 'number': 86} | 0.5550 | 0.6092 | 0.5808 | 0.9372 |
62
+ | 0.0031 | 60.0 | 600 | 0.3808 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} | {'precision': 0.2786885245901639, 'recall': 0.40476190476190477, 'f1': 0.33009708737864074, 'number': 42} | {'precision': 1.0, 'recall': 0.6666666666666666, 'f1': 0.8, 'number': 6} | {'precision': 0.8333333333333334, 'recall': 1.0, 'f1': 0.9090909090909091, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 0.4077669902912621, 'recall': 0.4883720930232558, 'f1': 0.44444444444444436, 'number': 86} | 0.4928 | 0.5920 | 0.5379 | 0.9372 |
63
+ | 0.0031 | 80.0 | 800 | 0.3239 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} | {'precision': 0.2807017543859649, 'recall': 0.38095238095238093, 'f1': 0.32323232323232326, 'number': 42} | {'precision': 1.0, 'recall': 0.8333333333333334, 'f1': 0.9090909090909091, 'number': 6} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 0.45, 'recall': 0.5232558139534884, 'f1': 0.48387096774193555, 'number': 86} | 0.5248 | 0.6092 | 0.5638 | 0.9532 |
64
+ | 0.0007 | 100.0 | 1000 | 0.3718 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} | {'precision': 0.375, 'recall': 0.42857142857142855, 'f1': 0.39999999999999997, 'number': 42} | {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1': 0.6666666666666666, 'number': 6} | {'precision': 0.8333333333333334, 'recall': 1.0, 'f1': 0.9090909090909091, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 0.4891304347826087, 'recall': 0.5232558139534884, 'f1': 0.5056179775280899, 'number': 86} | 0.5722 | 0.6149 | 0.5928 | 0.9467 |
65
+ | 0.0002 | 120.0 | 1200 | 0.4208 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} | {'precision': 0.34, 'recall': 0.40476190476190477, 'f1': 0.36956521739130443, 'number': 42} | {'precision': 0.5, 'recall': 0.5, 'f1': 0.5, 'number': 6} | {'precision': 0.8333333333333334, 'recall': 1.0, 'f1': 0.9090909090909091, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 0.4731182795698925, 'recall': 0.5116279069767442, 'f1': 0.4916201117318436, 'number': 86} | 0.5474 | 0.5977 | 0.5714 | 0.9408 |
66
+ | 0.0003 | 140.0 | 1400 | 0.4155 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} | {'precision': 0.3333333333333333, 'recall': 0.40476190476190477, 'f1': 0.3655913978494623, 'number': 42} | {'precision': 0.8, 'recall': 0.6666666666666666, 'f1': 0.7272727272727272, 'number': 6} | {'precision': 0.8333333333333334, 'recall': 1.0, 'f1': 0.9090909090909091, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 0.46808510638297873, 'recall': 0.5116279069767442, 'f1': 0.4888888888888889, 'number': 86} | 0.5497 | 0.6034 | 0.5753 | 0.9397 |
67
+ | 0.0004 | 160.0 | 1600 | 0.4277 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} | {'precision': 0.391304347826087, 'recall': 0.42857142857142855, 'f1': 0.4090909090909091, 'number': 42} | {'precision': 0.75, 'recall': 0.5, 'f1': 0.6, 'number': 6} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 0.5287356321839081, 'recall': 0.5348837209302325, 'f1': 0.5317919075144507, 'number': 86} | 0.6045 | 0.6149 | 0.6097 | 0.9431 |
68
+ | 0.0001 | 180.0 | 1800 | 0.3870 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} | {'precision': 0.27586206896551724, 'recall': 0.38095238095238093, 'f1': 0.32, 'number': 42} | {'precision': 0.75, 'recall': 0.5, 'f1': 0.6, 'number': 6} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 0.45, 'recall': 0.5232558139534884, 'f1': 0.48387096774193555, 'number': 86} | 0.5149 | 0.5977 | 0.5532 | 0.9476 |
69
+ | 0.0001 | 200.0 | 2000 | 0.3956 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} | {'precision': 0.3617021276595745, 'recall': 0.40476190476190477, 'f1': 0.3820224719101123, 'number': 42} | {'precision': 0.75, 'recall': 0.5, 'f1': 0.6, 'number': 6} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 0.5056179775280899, 'recall': 0.5232558139534884, 'f1': 0.5142857142857142, 'number': 86} | 0.5833 | 0.6034 | 0.5932 | 0.9526 |
70
+ | 0.0001 | 220.0 | 2200 | 0.4029 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} | {'precision': 0.3469387755102041, 'recall': 0.40476190476190477, 'f1': 0.3736263736263736, 'number': 42} | {'precision': 0.6, 'recall': 0.5, 'f1': 0.5454545454545454, 'number': 6} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 0.5, 'recall': 0.5348837209302325, 'f1': 0.5168539325842696, 'number': 86} | 0.5699 | 0.6092 | 0.5889 | 0.9508 |
71
+ | 0.0 | 240.0 | 2400 | 0.4031 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} | {'precision': 0.34, 'recall': 0.40476190476190477, 'f1': 0.36956521739130443, 'number': 42} | {'precision': 0.75, 'recall': 0.5, 'f1': 0.6, 'number': 6} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 0.4891304347826087, 'recall': 0.5232558139534884, 'f1': 0.5056179775280899, 'number': 86} | 0.5645 | 0.6034 | 0.5833 | 0.9499 |
72
 
73
 
74
  ### Framework versions
logs/events.out.tfevents.1718952740.ce303d0cd108.354.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2a96fe686efa01eef2e77a11802c393f62efcfe5c18aacfc91554c3c8172cb48
3
- size 13782
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4670380d886d9279d671f712d05976485b97d8f4b7f3113c9b194dd314a4d4e8
3
+ size 14136
logs/events.out.tfevents.1718954789.ce303d0cd108.354.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d03626cce57afe6abab723d630f5bec5365d3fb97b96da7c5ed4b9a5a8c99ff
3
+ size 592
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:aa86ac0430e9a198f4a5439083591fbcb7ac99d3f36063930ef499c288696ddc
3
  size 520724488
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0953f9ea8d7fdab7021e2bd132a606a25f0cf0cb21204c79f6a41fc4db28dd2
3
  size 520724488