Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +15 -15
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.82 +/- 0.06
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01e58d140dc79ec538fbd0646b9195a5b78a9271a164cab4717dbabdf6b2859f
|
3 |
+
size 108058
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -19,24 +19,24 @@
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
-
"num_timesteps":
|
23 |
-
"_total_timesteps":
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
-
"learning_rate":
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
31 |
":type:": "<class 'function'>",
|
32 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[0.
|
38 |
-
"desired_goal": "[[-0.
|
39 |
-
"observation": "[[0.
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,9 +44,9 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[ 0.
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
@@ -56,13 +56,13 @@
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
-
"_n_updates":
|
66 |
"n_steps": 5,
|
67 |
"gamma": 0.99,
|
68 |
"gae_lambda": 1.0,
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3cf4dcfca0>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f3cf4dd3080>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
+
"num_timesteps": 2000000,
|
23 |
+
"_total_timesteps": 2000000,
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1681407516028723459,
|
28 |
+
"learning_rate": 5e-05,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
31 |
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Cjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAPgqgPqofprtsrws/PgqgPqofprtsrws/PgqgPqofprtsrws/PgqgPqofprtsrws/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+9ndv9lP4T77f5y/UYVwv+69Sz/IHCm/ZrHAvh59eT8bg50/2b9/P2BqCb/YM8M+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA+CqA+qh+mu2yvCz84N/i7t2IEu5+FTDw+CqA+qh+mu2yvCz84N/i7t2IEu5+FTDw+CqA+qh+mu2yvCz84N/i7t2IEu5+FTDw+CqA+qh+mu2yvCz84N/i7t2IEu5+FTDyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.31257814 -0.00506969 0.5456455 ]\n [ 0.31257814 -0.00506969 0.5456455 ]\n [ 0.31257814 -0.00506969 0.5456455 ]\n [ 0.31257814 -0.00506969 0.5456455 ]]",
|
38 |
+
"desired_goal": "[[-1.7332147 0.4400623 -1.2226557 ]\n [-0.93953425 0.79586685 -0.6605954 ]\n [-0.37635344 0.9745654 1.2305635 ]\n [ 0.9990211 -0.5367794 0.3812549 ]]",
|
39 |
+
"observation": "[[ 0.31257814 -0.00506969 0.5456455 -0.00757494 -0.00202004 0.01248303]\n [ 0.31257814 -0.00506969 0.5456455 -0.00757494 -0.00202004 0.01248303]\n [ 0.31257814 -0.00506969 0.5456455 -0.00757494 -0.00202004 0.01248303]\n [ 0.31257814 -0.00506969 0.5456455 -0.00757494 -0.00202004 0.01248303]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAyJySPUeAzD12TP08YtoyvcFvhz0TT706s89evSX4aTw/fss7Kz3/OtBqA77kkCE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.0715881 0.09985404 0.03092025]\n [-0.0436653 0.06613112 0.00144431]\n [-0.0543973 0.01428035 0.00621012]\n [ 0.00194732 -0.12833714 0.15777928]]",
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJ4kl5e4z87+UhpRSlIwBbJRLMowBdJRHQLR8+hOP/711fZQoaAZoCWgPQwh+/+bFiS/3v5SGlFKUaBVLMmgWR0C0fNVw5vLpdX2UKGgGaAloD0MIelT83xFV9b+UhpRSlGgVSzJoFkdAtHy2SxJNCnV9lChoBmgJaA9DCFTFVPoJZ+2/lIaUUpRoFUsyaBZHQLR8mJPZZjh1fZQoaAZoCWgPQwhkc9U8RyT1v5SGlFKUaBVLMmgWR0C0fcGkzoECdX2UKGgGaAloD0MI7+cU5Gcj8r+UhpRSlGgVSzJoFkdAtH2cqlP8AXV9lChoBmgJaA9DCLX66qpALfS/lIaUUpRoFUsyaBZHQLR9fdqL0jF1fZQoaAZoCWgPQwgWwJSBA1r0v5SGlFKUaBVLMmgWR0C0fWChJyyVdX2UKGgGaAloD0MIHhX/d0TF8b+UhpRSlGgVSzJoFkdAtH5u+6Ae73V9lChoBmgJaA9DCBLZB1kWzPG/lIaUUpRoFUsyaBZHQLR+SayrxRV1fZQoaAZoCWgPQwiyKsJNRlXxv5SGlFKUaBVLMmgWR0C0fior4FibdX2UKGgGaAloD0MIAJATJoxm97+UhpRSlGgVSzJoFkdAtH4MB5ooNXV9lChoBmgJaA9DCJjCg2bXvfK/lIaUUpRoFUsyaBZHQLR+5beMyad1fZQoaAZoCWgPQwg/OnXlszz0v5SGlFKUaBVLMmgWR0C0fsCmhufmdX2UKGgGaAloD0MIrDqrBfZY8r+UhpRSlGgVSzJoFkdAtH6hMIu5BnV9lChoBmgJaA9DCDhnRGlvMPa/lIaUUpRoFUsyaBZHQLR+gyoGY8d1fZQoaAZoCWgPQwidn+I48Crxv5SGlFKUaBVLMmgWR0C0f2Lah6BzdX2UKGgGaAloD0MIGVjH8UMl8r+UhpRSlGgVSzJoFkdAtH89jEvTPXV9lChoBmgJaA9DCEUr9wKzgvS/lIaUUpRoFUsyaBZHQLR/HgpjMFF1fZQoaAZoCWgPQwi+TurL0k7zv5SGlFKUaBVLMmgWR0C0fwAN0/4ZdX2UKGgGaAloD0MIEfxvJTv29L+UhpRSlGgVSzJoFkdAtH/gD4gzQHV9lChoBmgJaA9DCGK7e4Dui/W/lIaUUpRoFUsyaBZHQLR/uuSwGGF1fZQoaAZoCWgPQwgdHVcju9Lwv5SGlFKUaBVLMmgWR0C0f5tv863idX2UKGgGaAloD0MIcaq1MAtt8L+UhpRSlGgVSzJoFkdAtH99WRzRyHV9lChoBmgJaA9DCCyf5Xlwt/C/lIaUUpRoFUsyaBZHQLSAWEsrd311fZQoaAZoCWgPQwjYRjzZzUzzv5SGlFKUaBVLMmgWR0C0gDMTN+spdX2UKGgGaAloD0MI6iRbXU5J9b+UhpRSlGgVSzJoFkdAtIATvJA+p3V9lChoBmgJaA9DCNtMhXgknvS/lIaUUpRoFUsyaBZHQLR/9aA4GUx1fZQoaAZoCWgPQwi8Wu7MBEPtv5SGlFKUaBVLMmgWR0C0gM31J17qdX2UKGgGaAloD0MIg2vu6H859b+UhpRSlGgVSzJoFkdAtICooKD02HV9lChoBmgJaA9DCD18mShCqvO/lIaUUpRoFUsyaBZHQLSAiSCvovB1fZQoaAZoCWgPQwhGByRh387xv5SGlFKUaBVLMmgWR0C0gGsN2C/XdX2UKGgGaAloD0MIPUm6ZvLN9L+UhpRSlGgVSzJoFkdAtIFDIFNcnnV9lChoBmgJaA9DCOFembfq+vK/lIaUUpRoFUsyaBZHQLSBHdQfp2V1fZQoaAZoCWgPQwjw+sxZnzL0v5SGlFKUaBVLMmgWR0C0gP5KraM8dX2UKGgGaAloD0MIuvPEc7ZA8L+UhpRSlGgVSzJoFkdAtIDgIt16mnV9lChoBmgJaA9DCNvEyf0ORfC/lIaUUpRoFUsyaBZHQLSBtEgGKQ91fZQoaAZoCWgPQwhgkV8/xEb1v5SGlFKUaBVLMmgWR0C0gY75VOsUdX2UKGgGaAloD0MI4Xmp2JgX8b+UhpRSlGgVSzJoFkdAtIFve3x4IXV9lChoBmgJaA9DCIoAp3fx/va/lIaUUpRoFUsyaBZHQLSBUVhkRSR1fZQoaAZoCWgPQwhjfQOTG0Xxv5SGlFKUaBVLMmgWR0C0gjGwV0tAdX2UKGgGaAloD0MIf2lRn+RO97+UhpRSlGgVSzJoFkdAtIIMdfb9InV9lChoBmgJaA9DCHnOFhBaT/e/lIaUUpRoFUsyaBZHQLSB7PfKp1l1fZQoaAZoCWgPQwjkvWplwu/xv5SGlFKUaBVLMmgWR0C0gc7jLjgidX2UKGgGaAloD0MI1xTI7Cw68r+UhpRSlGgVSzJoFkdAtIKu5iExqXV9lChoBmgJaA9DCJm7lpAPuvG/lIaUUpRoFUsyaBZHQLSCiZk078x1fZQoaAZoCWgPQwjGqGvtferwv5SGlFKUaBVLMmgWR0C0gmoSDh99dX2UKGgGaAloD0MIl/+Qfvs687+UhpRSlGgVSzJoFkdAtIJL+qBEr3V9lChoBmgJaA9DCBaInpRJDfS/lIaUUpRoFUsyaBZHQLSDJ3JPqLV1fZQoaAZoCWgPQwgOvFruzETzv5SGlFKUaBVLMmgWR0C0gwIrrgO0dX2UKGgGaAloD0MIHHi13JkJ8L+UhpRSlGgVSzJoFkdAtILiqo60Y3V9lChoBmgJaA9DCAM/qmG/Z/O/lIaUUpRoFUsyaBZHQLSCxLoOhCd1fZQoaAZoCWgPQwi2upwSEBPzv5SGlFKUaBVLMmgWR0C0g6Ih2W6cdX2UKGgGaAloD0MIEK/rF+yG8r+UhpRSlGgVSzJoFkdAtIN82Jiy6nV9lChoBmgJaA9DCHY3T3XIze6/lIaUUpRoFUsyaBZHQLSDXVwxWT51fZQoaAZoCWgPQwhlxAWgUfryv5SGlFKUaBVLMmgWR0C0gz86/7BPdX2UKGgGaAloD0MIjNgngGKk8L+UhpRSlGgVSzJoFkdAtIQYwQDmsHV9lChoBmgJaA9DCDXuzW+YaPW/lIaUUpRoFUsyaBZHQLSD84DcM3J1fZQoaAZoCWgPQwiA7suZ7Uryv5SGlFKUaBVLMmgWR0C0g9QSzw+ddX2UKGgGaAloD0MIGAltOZci87+UhpRSlGgVSzJoFkdAtIO1+az/qHV9lChoBmgJaA9DCD3TS4xlOvG/lIaUUpRoFUsyaBZHQLSEjpZwGW51fZQoaAZoCWgPQwh5eTpXlJL0v5SGlFKUaBVLMmgWR0C0hGlImPYGdX2UKGgGaAloD0MIr7X3qSo087+UhpRSlGgVSzJoFkdAtIRJ0IToMnV9lChoBmgJaA9DCIS8HkyKD/W/lIaUUpRoFUsyaBZHQLSEK68QI2R1fZQoaAZoCWgPQwgUlQ1rKkv1v5SGlFKUaBVLMmgWR0C0hQZ+hGpddX2UKGgGaAloD0MIXtpwWBp49L+UhpRSlGgVSzJoFkdAtIThO8Cgb3V9lChoBmgJaA9DCGPt72yPHvC/lIaUUpRoFUsyaBZHQLSEwbAUL2J1fZQoaAZoCWgPQwjqeTcWFIbzv5SGlFKUaBVLMmgWR0C0hKOQuEmIdX2UKGgGaAloD0MIiUD1DyKZ87+UhpRSlGgVSzJoFkdAtIV8BvJiiXV9lChoBmgJaA9DCFBSYAFMGfG/lIaUUpRoFUsyaBZHQLSFVr/bTMJ1fZQoaAZoCWgPQwhM4UGz6172v5SGlFKUaBVLMmgWR0C0hTc8cMmXdX2UKGgGaAloD0MIb4Jvmj7787+UhpRSlGgVSzJoFkdAtIUZH7P6bnV9lChoBmgJaA9DCFvQe2MIgPC/lIaUUpRoFUsyaBZHQLSF+0oBq9J1fZQoaAZoCWgPQwhLkuf6Ppzzv5SGlFKUaBVLMmgWR0C0hdYDTz/ZdX2UKGgGaAloD0MIc7nBUIeV9L+UhpRSlGgVSzJoFkdAtIW2fkFOf3V9lChoBmgJaA9DCDoDIy9r4vK/lIaUUpRoFUsyaBZHQLSFmGtITXd1fZQoaAZoCWgPQwgS+pl63SLtv5SGlFKUaBVLMmgWR0C0hnLApKBedX2UKGgGaAloD0MIFTjZBu6A9L+UhpRSlGgVSzJoFkdAtIZNo24usnV9lChoBmgJaA9DCNWUZB2OLvC/lIaUUpRoFUsyaBZHQLSGLjBl+Vl1fZQoaAZoCWgPQwilFkomp7b1v5SGlFKUaBVLMmgWR0C0hhA3YL9ddX2UKGgGaAloD0MIZjGx+bj28b+UhpRSlGgVSzJoFkdAtIbmY1He8HV9lChoBmgJaA9DCJxtbkxPmPa/lIaUUpRoFUsyaBZHQLSGwSVnmJZ1fZQoaAZoCWgPQwhCdt7GZgfzv5SGlFKUaBVLMmgWR0C0hqGfbsWwdX2UKGgGaAloD0MIH7qgvmXO9L+UhpRSlGgVSzJoFkdAtIaDlLeyiXV9lChoBmgJaA9DCMAIGjOJ+vC/lIaUUpRoFUsyaBZHQLSHX//echF1fZQoaAZoCWgPQwjB5bFmZBDxv5SGlFKUaBVLMmgWR0C0hzrftQbddX2UKGgGaAloD0MItRt9zAfE8b+UhpRSlGgVSzJoFkdAtIcbaCcwxnV9lChoBmgJaA9DCPa1LjVCP/a/lIaUUpRoFUsyaBZHQLSG/UX531V1fZQoaAZoCWgPQwhyTuyhfazzv5SGlFKUaBVLMmgWR0C0h9MwlByCdX2UKGgGaAloD0MIvfxOkxlv9b+UhpRSlGgVSzJoFkdAtIet56dDpnV9lChoBmgJaA9DCNjyyvW2GfS/lIaUUpRoFUsyaBZHQLSHjmIj4Yd1fZQoaAZoCWgPQwjxnZj1Ymjyv5SGlFKUaBVLMmgWR0C0h3BJyyUtdX2UKGgGaAloD0MIlrN3RlvV9b+UhpRSlGgVSzJoFkdAtIhFwgkkbHV9lChoBmgJaA9DCAt9sIwNXfS/lIaUUpRoFUsyaBZHQLSIIJXyRSx1fZQoaAZoCWgPQwhYVS+/0yTyv5SGlFKUaBVLMmgWR0C0iAEPUaybdX2UKGgGaAloD0MIcjeI1oq28L+UhpRSlGgVSzJoFkdAtIfjLEDQq3V9lChoBmgJaA9DCF9DcFzGzfK/lIaUUpRoFUsyaBZHQLSI9Z6D5CZ1fZQoaAZoCWgPQwhZGCKnryfyv5SGlFKUaBVLMmgWR0C0iNCSq2jPdX2UKGgGaAloD0MId0oH6/9c9b+UhpRSlGgVSzJoFkdAtIixQuVX3nV9lChoBmgJaA9DCEht4uR+R/C/lIaUUpRoFUsyaBZHQLSIk2NNrTJ1ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
+
"_n_updates": 100000,
|
66 |
"n_steps": 5,
|
67 |
"gamma": 0.99,
|
68 |
"gae_lambda": 1.0,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b104f93186e04dc21939a40d91849c9fbc2baaa74d53cf56d1536e1321953441
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f43d583b11359e77e3524f0f33607881e0904d4a4afd68e03b23e9e33808011
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f4e9dbf03a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4e9dbee9c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681305659597199531, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAIvLVPungjTwphhA/IvLVPungjTwphhA/IvLVPungjTwphhA/IvLVPungjTwphhA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4q4xv/rkQT2heaW+kJmCvd+REz9wABS/MPoGPxPznL9s0bo/EBQyvnJ3Xj8P68y/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAi8tU+6eCNPCmGED/7TK07jdvjOsQrmzsi8tU+6eCNPCmGED/7TK07jdvjOsQrmzsi8tU+6eCNPCmGED/7TK07jdvjOsQrmzsi8tU+6eCNPCmGED/7TK07jdvjOsQrmzuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.41786295 0.01731916 0.5645471 ]\n [0.41786295 0.01731916 0.5645471 ]\n [0.41786295 0.01731916 0.5645471 ]\n [0.41786295 0.01731916 0.5645471 ]]", "desired_goal": "[[-0.69407475 0.04733751 -0.32319358]\n [-0.06376946 0.57644457 -0.5781317 ]\n [ 0.52725506 -1.226168 1.459516 ]\n [-0.17390466 0.8690101 -1.6009234 ]]", "observation": "[[0.41786295 0.01731916 0.5645471 0.00528872 0.00173842 0.00473544]\n [0.41786295 0.01731916 0.5645471 0.00528872 0.00173842 0.00473544]\n [0.41786295 0.01731916 0.5645471 0.00528872 0.00173842 0.00473544]\n [0.41786295 0.01731916 0.5645471 0.00528872 0.00173842 0.00473544]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAdUjZPJU5BL63cjI+ACrBvW2vxDzv0nE9w+S4u8qDDr5iZdE9xXbSvZnMlD2qfQE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02652381 -0.12912591 0.17426573]\n [-0.09431839 0.02400943 0.05903905]\n [-0.0056425 -0.13917461 0.10224415]\n [-0.1027656 0.07265586 0.12645593]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILXqnAu45BcCUhpRSlIwBbJRLMowBdJRHQKeW258Sf191fZQoaAZoCWgPQwjEmPT3UvgKwJSGlFKUaBVLMmgWR0CnlojlHSWrdX2UKGgGaAloD0MINnSzP1AuDsCUhpRSlGgVSzJoFkdAp5YyrDIiknV9lChoBmgJaA9DCPktOllq/QfAlIaUUpRoFUsyaBZHQKeV1tBOYY11fZQoaAZoCWgPQwhzf/W4bxUQwJSGlFKUaBVLMmgWR0CnmIw0waisdX2UKGgGaAloD0MIyy2thsRdEcCUhpRSlGgVSzJoFkdAp5g6Cxu89XV9lChoBmgJaA9DCOM1r+qsVgfAlIaUUpRoFUsyaBZHQKeX5A2Q4jt1fZQoaAZoCWgPQwigNNQoJHkNwJSGlFKUaBVLMmgWR0Cnl4g3kxREdX2UKGgGaAloD0MIBOW2fY/6AMCUhpRSlGgVSzJoFkdAp5pIM8YAKnV9lChoBmgJaA9DCNV3flGCjhXAlIaUUpRoFUsyaBZHQKeZ9kauOjt1fZQoaAZoCWgPQwj0TZoGRZMSwJSGlFKUaBVLMmgWR0CnmZ/JNj9XdX2UKGgGaAloD0MI3soSnWVWAcCUhpRSlGgVSzJoFkdAp5lD7oB7u3V9lChoBmgJaA9DCEEN38K60QzAlIaUUpRoFUsyaBZHQKebvcfNiYt1fZQoaAZoCWgPQwj0qWOV0jMDwJSGlFKUaBVLMmgWR0Cnm2o6Kcd6dX2UKGgGaAloD0MI3lflQuUfBsCUhpRSlGgVSzJoFkdAp5sStA9mpXV9lChoBmgJaA9DCCttcY3PJAnAlIaUUpRoFUsyaBZHQKeatalDWsl1fZQoaAZoCWgPQwgK20/G+HASwJSGlFKUaBVLMmgWR0CnnLki+tbLdX2UKGgGaAloD0MImN2Th4WaBcCUhpRSlGgVSzJoFkdAp5xlwWFewHV9lChoBmgJaA9DCCnrNxPThQXAlIaUUpRoFUsyaBZHQKecDmnwXqJ1fZQoaAZoCWgPQwhfJ/VlaUcJwJSGlFKUaBVLMmgWR0Cnm7GR/3FldX2UKGgGaAloD0MIrMYS1sZYCsCUhpRSlGgVSzJoFkdAp521HDrJKnV9lChoBmgJaA9DCEYKZeHrOxXAlIaUUpRoFUsyaBZHQKedYeaKDTV1fZQoaAZoCWgPQwhKCFbVyy8QwJSGlFKUaBVLMmgWR0CnnQqG1x82dX2UKGgGaAloD0MIsRcK2A6GDMCUhpRSlGgVSzJoFkdAp5ytTYNAknV9lChoBmgJaA9DCO6x9KELSg/AlIaUUpRoFUsyaBZHQKeesh+vyLB1fZQoaAZoCWgPQwhftp22RoT+v5SGlFKUaBVLMmgWR0Cnnl6Jyhi9dX2UKGgGaAloD0MIQfLOoQz1C8CUhpRSlGgVSzJoFkdAp54HPLPldXV9lChoBmgJaA9DCL1w58JIL/m/lIaUUpRoFUsyaBZHQKedqhZha1V1fZQoaAZoCWgPQwgkC5jArfsKwJSGlFKUaBVLMmgWR0Cnn6znaFmGdX2UKGgGaAloD0MI8l8gCJCh+r+UhpRSlGgVSzJoFkdAp59ZnezlcXV9lChoBmgJaA9DCIF2hxQDBAnAlIaUUpRoFUsyaBZHQKefAmLLpzN1fZQoaAZoCWgPQwh/3lSkwtgIwJSGlFKUaBVLMmgWR0CnnqUqYqoZdX2UKGgGaAloD0MIqDRiZp+HCMCUhpRSlGgVSzJoFkdAp6Cej9GZu3V9lChoBmgJaA9DCHV0XI3sGhDAlIaUUpRoFUsyaBZHQKegSwHqu8t1fZQoaAZoCWgPQwjG98WlKu0RwJSGlFKUaBVLMmgWR0Cnn/OgYgq3dX2UKGgGaAloD0MIDLCPTl05DMCUhpRSlGgVSzJoFkdAp5+WW+oLonV9lChoBmgJaA9DCLCryVNW8wzAlIaUUpRoFUsyaBZHQKehlAuZkTZ1fZQoaAZoCWgPQwim7V9ZadL2v5SGlFKUaBVLMmgWR0CnoUCYb83udX2UKGgGaAloD0MILGFtjJ2wEcCUhpRSlGgVSzJoFkdAp6DpLuhK2HV9lChoBmgJaA9DCN/5RQn6KwTAlIaUUpRoFUsyaBZHQKegjBOYYzl1fZQoaAZoCWgPQwjS4/c2/ZkFwJSGlFKUaBVLMmgWR0Cnon5aFEiMdX2UKGgGaAloD0MIWrkXmBUqA8CUhpRSlGgVSzJoFkdAp6Iq+BYms3V9lChoBmgJaA9DCApI+x9g3RXAlIaUUpRoFUsyaBZHQKeh0580DU51fZQoaAZoCWgPQwhyUMJM238HwJSGlFKUaBVLMmgWR0CnoXaJZW7wdX2UKGgGaAloD0MIGXEBaJTuCcCUhpRSlGgVSzJoFkdAp6NunZTQ3XV9lChoBmgJaA9DCPlJtU/HIwjAlIaUUpRoFUsyaBZHQKejG1hLGrF1fZQoaAZoCWgPQwjeOv922a/4v5SGlFKUaBVLMmgWR0CnosPatcOcdX2UKGgGaAloD0MIMZbpl4i3+L+UhpRSlGgVSzJoFkdAp6Jmn0kGA3V9lChoBmgJaA9DCCzVBbzM0ATAlIaUUpRoFUsyaBZHQKekZsJIDo11fZQoaAZoCWgPQwgQzNHj9zYMwJSGlFKUaBVLMmgWR0CnpBOTRplCdX2UKGgGaAloD0MIVOOlm8QAAcCUhpRSlGgVSzJoFkdAp6O75ylvZXV9lChoBmgJaA9DCK+T+rK0UxbAlIaUUpRoFUsyaBZHQKejXs3Q2Mt1fZQoaAZoCWgPQwhangd3Z60DwJSGlFKUaBVLMmgWR0CnpVf336AOdX2UKGgGaAloD0MIH2lwW1sYCcCUhpRSlGgVSzJoFkdAp6UEleF+NXV9lChoBmgJaA9DCHtOet/4mv6/lIaUUpRoFUsyaBZHQKekrTqjaf11fZQoaAZoCWgPQwijlXuBWQECwJSGlFKUaBVLMmgWR0CnpFBOP/70dX2UKGgGaAloD0MIwELmyqCaAcCUhpRSlGgVSzJoFkdAp6ZFr6+FlHV9lChoBmgJaA9DCLHCLR9Jif2/lIaUUpRoFUsyaBZHQKel8mv4dp91fZQoaAZoCWgPQwiob5nTZbH3v5SGlFKUaBVLMmgWR0CnpZsM7U5NdX2UKGgGaAloD0MIXFSLiGLyBcCUhpRSlGgVSzJoFkdAp6U+DpTuOXV9lChoBmgJaA9DCJlKP+HsVve/lIaUUpRoFUsyaBZHQKenRIDoyKx1fZQoaAZoCWgPQwjPMLWlDjL6v5SGlFKUaBVLMmgWR0CnpvEQoTf0dX2UKGgGaAloD0MIZ/M4DOav/7+UhpRSlGgVSzJoFkdAp6aZgLJCB3V9lChoBmgJaA9DCKTDQxg/zQTAlIaUUpRoFUsyaBZHQKemPIPK+zt1fZQoaAZoCWgPQwgqVg3C3K4CwJSGlFKUaBVLMmgWR0CnqDNh/iHZdX2UKGgGaAloD0MIhJuMKsNYAcCUhpRSlGgVSzJoFkdAp6fgIQe3hHV9lChoBmgJaA9DCHNmu0If7BLAlIaUUpRoFUsyaBZHQKeniLGaQV91fZQoaAZoCWgPQwjBVDNrKcABwJSGlFKUaBVLMmgWR0CnpyuB+WnkdX2UKGgGaAloD0MIOh+eJchI/r+UhpRSlGgVSzJoFkdAp6knaFmFrXV9lChoBmgJaA9DCJ4GDJI+rfW/lIaUUpRoFUsyaBZHQKeo087IT5B1fZQoaAZoCWgPQwiIR+Ll6Vz6v5SGlFKUaBVLMmgWR0CnqHxmCiAUdX2UKGgGaAloD0MIF0hQ/BjTCsCUhpRSlGgVSzJoFkdAp6gfSlWOqHV9lChoBmgJaA9DCO0ozlFH5wbAlIaUUpRoFUsyaBZHQKeqGSntOVR1fZQoaAZoCWgPQwgPYJFfPwQLwJSGlFKUaBVLMmgWR0CnqcWjfvWpdX2UKGgGaAloD0MIcOmY84y9/7+UhpRSlGgVSzJoFkdAp6luVTrE+HV9lChoBmgJaA9DCED8/Pfg9fm/lIaUUpRoFUsyaBZHQKepERMewLV1fZQoaAZoCWgPQwj/W8mOjcAPwJSGlFKUaBVLMmgWR0CnqwTL4etCdX2UKGgGaAloD0MIvW2mQjyCEcCUhpRSlGgVSzJoFkdAp6qxV4oqkXV9lChoBmgJaA9DCPMf0m9fhwvAlIaUUpRoFUsyaBZHQKeqWcXm/351fZQoaAZoCWgPQwgAOPbsucz+v5SGlFKUaBVLMmgWR0CnqfyVW0Z4dX2UKGgGaAloD0MIHAqfrYMjDMCUhpRSlGgVSzJoFkdAp6vlUp/gBXV9lChoBmgJaA9DCHWuKCUEa/u/lIaUUpRoFUsyaBZHQKerkbwz+FV1fZQoaAZoCWgPQwj4cMlxpxQEwJSGlFKUaBVLMmgWR0CnqzoZ62ORdX2UKGgGaAloD0MIW0I+6Nms+7+UhpRSlGgVSzJoFkdAp6rc/fO2RnV9lChoBmgJaA9DCEWduYeE7/2/lIaUUpRoFUsyaBZHQKesy4aP0Zp1fZQoaAZoCWgPQwjMJsCw/PkIwJSGlFKUaBVLMmgWR0CnrHgZ0jkddX2UKGgGaAloD0MIqdvZVx6k/r+UhpRSlGgVSzJoFkdAp6wgc7yQP3V9lChoBmgJaA9DCHO6LCY2PwHAlIaUUpRoFUsyaBZHQKerwy2x6fJ1fZQoaAZoCWgPQwgY7IZti7IEwJSGlFKUaBVLMmgWR0CnrbT3h4t6dX2UKGgGaAloD0MI6GuWy0Yn+L+UhpRSlGgVSzJoFkdAp61ho24usnV9lChoBmgJaA9DCAO1GDxM+/S/lIaUUpRoFUsyaBZHQKetCfkFOfx1fZQoaAZoCWgPQwiAnZs241QDwJSGlFKUaBVLMmgWR0CnrKzI/7iydX2UKGgGaAloD0MI9z5VhQaCCMCUhpRSlGgVSzJoFkdAp66fj+717XV9lChoBmgJaA9DCEWDFDyF3Py/lIaUUpRoFUsyaBZHQKeuTCFbmlt1fZQoaAZoCWgPQwj/A6xVu6YCwJSGlFKUaBVLMmgWR0CnrfTP0I1MdX2UKGgGaAloD0MIJAot6/6RB8CUhpRSlGgVSzJoFkdAp62XixVyWHV9lChoBmgJaA9DCAlOfSB5ZwjAlIaUUpRoFUsyaBZHQKevqQ176YV1fZQoaAZoCWgPQwj5hsJn6yAGwJSGlFKUaBVLMmgWR0Cnr1adDpkgdX2UKGgGaAloD0MI8G5lic5SBsCUhpRSlGgVSzJoFkdAp67/yCnP3XV9lChoBmgJaA9DCEG3lzRGOxXAlIaUUpRoFUsyaBZHQKeuotga3ql1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3cf4dcfca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3cf4dd3080>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681407516028723459, "learning_rate": 5e-05, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Cjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAPgqgPqofprtsrws/PgqgPqofprtsrws/PgqgPqofprtsrws/PgqgPqofprtsrws/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+9ndv9lP4T77f5y/UYVwv+69Sz/IHCm/ZrHAvh59eT8bg50/2b9/P2BqCb/YM8M+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA+CqA+qh+mu2yvCz84N/i7t2IEu5+FTDw+CqA+qh+mu2yvCz84N/i7t2IEu5+FTDw+CqA+qh+mu2yvCz84N/i7t2IEu5+FTDw+CqA+qh+mu2yvCz84N/i7t2IEu5+FTDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.31257814 -0.00506969 0.5456455 ]\n [ 0.31257814 -0.00506969 0.5456455 ]\n [ 0.31257814 -0.00506969 0.5456455 ]\n [ 0.31257814 -0.00506969 0.5456455 ]]", "desired_goal": "[[-1.7332147 0.4400623 -1.2226557 ]\n [-0.93953425 0.79586685 -0.6605954 ]\n [-0.37635344 0.9745654 1.2305635 ]\n [ 0.9990211 -0.5367794 0.3812549 ]]", "observation": "[[ 0.31257814 -0.00506969 0.5456455 -0.00757494 -0.00202004 0.01248303]\n [ 0.31257814 -0.00506969 0.5456455 -0.00757494 -0.00202004 0.01248303]\n [ 0.31257814 -0.00506969 0.5456455 -0.00757494 -0.00202004 0.01248303]\n [ 0.31257814 -0.00506969 0.5456455 -0.00757494 -0.00202004 0.01248303]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAyJySPUeAzD12TP08YtoyvcFvhz0TT706s89evSX4aTw/fss7Kz3/OtBqA77kkCE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.0715881 0.09985404 0.03092025]\n [-0.0436653 0.06613112 0.00144431]\n [-0.0543973 0.01428035 0.00621012]\n [ 0.00194732 -0.12833714 0.15777928]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJ4kl5e4z87+UhpRSlIwBbJRLMowBdJRHQLR8+hOP/711fZQoaAZoCWgPQwh+/+bFiS/3v5SGlFKUaBVLMmgWR0C0fNVw5vLpdX2UKGgGaAloD0MIelT83xFV9b+UhpRSlGgVSzJoFkdAtHy2SxJNCnV9lChoBmgJaA9DCFTFVPoJZ+2/lIaUUpRoFUsyaBZHQLR8mJPZZjh1fZQoaAZoCWgPQwhkc9U8RyT1v5SGlFKUaBVLMmgWR0C0fcGkzoECdX2UKGgGaAloD0MI7+cU5Gcj8r+UhpRSlGgVSzJoFkdAtH2cqlP8AXV9lChoBmgJaA9DCLX66qpALfS/lIaUUpRoFUsyaBZHQLR9fdqL0jF1fZQoaAZoCWgPQwgWwJSBA1r0v5SGlFKUaBVLMmgWR0C0fWChJyyVdX2UKGgGaAloD0MIHhX/d0TF8b+UhpRSlGgVSzJoFkdAtH5u+6Ae73V9lChoBmgJaA9DCBLZB1kWzPG/lIaUUpRoFUsyaBZHQLR+SayrxRV1fZQoaAZoCWgPQwiyKsJNRlXxv5SGlFKUaBVLMmgWR0C0fior4FibdX2UKGgGaAloD0MIAJATJoxm97+UhpRSlGgVSzJoFkdAtH4MB5ooNXV9lChoBmgJaA9DCJjCg2bXvfK/lIaUUpRoFUsyaBZHQLR+5beMyad1fZQoaAZoCWgPQwg/OnXlszz0v5SGlFKUaBVLMmgWR0C0fsCmhufmdX2UKGgGaAloD0MIrDqrBfZY8r+UhpRSlGgVSzJoFkdAtH6hMIu5BnV9lChoBmgJaA9DCDhnRGlvMPa/lIaUUpRoFUsyaBZHQLR+gyoGY8d1fZQoaAZoCWgPQwidn+I48Crxv5SGlFKUaBVLMmgWR0C0f2Lah6BzdX2UKGgGaAloD0MIGVjH8UMl8r+UhpRSlGgVSzJoFkdAtH89jEvTPXV9lChoBmgJaA9DCEUr9wKzgvS/lIaUUpRoFUsyaBZHQLR/HgpjMFF1fZQoaAZoCWgPQwi+TurL0k7zv5SGlFKUaBVLMmgWR0C0fwAN0/4ZdX2UKGgGaAloD0MIEfxvJTv29L+UhpRSlGgVSzJoFkdAtH/gD4gzQHV9lChoBmgJaA9DCGK7e4Dui/W/lIaUUpRoFUsyaBZHQLR/uuSwGGF1fZQoaAZoCWgPQwgdHVcju9Lwv5SGlFKUaBVLMmgWR0C0f5tv863idX2UKGgGaAloD0MIcaq1MAtt8L+UhpRSlGgVSzJoFkdAtH99WRzRyHV9lChoBmgJaA9DCCyf5Xlwt/C/lIaUUpRoFUsyaBZHQLSAWEsrd311fZQoaAZoCWgPQwjYRjzZzUzzv5SGlFKUaBVLMmgWR0C0gDMTN+spdX2UKGgGaAloD0MI6iRbXU5J9b+UhpRSlGgVSzJoFkdAtIATvJA+p3V9lChoBmgJaA9DCNtMhXgknvS/lIaUUpRoFUsyaBZHQLR/9aA4GUx1fZQoaAZoCWgPQwi8Wu7MBEPtv5SGlFKUaBVLMmgWR0C0gM31J17qdX2UKGgGaAloD0MIg2vu6H859b+UhpRSlGgVSzJoFkdAtICooKD02HV9lChoBmgJaA9DCD18mShCqvO/lIaUUpRoFUsyaBZHQLSAiSCvovB1fZQoaAZoCWgPQwhGByRh387xv5SGlFKUaBVLMmgWR0C0gGsN2C/XdX2UKGgGaAloD0MIPUm6ZvLN9L+UhpRSlGgVSzJoFkdAtIFDIFNcnnV9lChoBmgJaA9DCOFembfq+vK/lIaUUpRoFUsyaBZHQLSBHdQfp2V1fZQoaAZoCWgPQwjw+sxZnzL0v5SGlFKUaBVLMmgWR0C0gP5KraM8dX2UKGgGaAloD0MIuvPEc7ZA8L+UhpRSlGgVSzJoFkdAtIDgIt16mnV9lChoBmgJaA9DCNvEyf0ORfC/lIaUUpRoFUsyaBZHQLSBtEgGKQ91fZQoaAZoCWgPQwhgkV8/xEb1v5SGlFKUaBVLMmgWR0C0gY75VOsUdX2UKGgGaAloD0MI4Xmp2JgX8b+UhpRSlGgVSzJoFkdAtIFve3x4IXV9lChoBmgJaA9DCIoAp3fx/va/lIaUUpRoFUsyaBZHQLSBUVhkRSR1fZQoaAZoCWgPQwhjfQOTG0Xxv5SGlFKUaBVLMmgWR0C0gjGwV0tAdX2UKGgGaAloD0MIf2lRn+RO97+UhpRSlGgVSzJoFkdAtIIMdfb9InV9lChoBmgJaA9DCHnOFhBaT/e/lIaUUpRoFUsyaBZHQLSB7PfKp1l1fZQoaAZoCWgPQwjkvWplwu/xv5SGlFKUaBVLMmgWR0C0gc7jLjgidX2UKGgGaAloD0MI1xTI7Cw68r+UhpRSlGgVSzJoFkdAtIKu5iExqXV9lChoBmgJaA9DCJm7lpAPuvG/lIaUUpRoFUsyaBZHQLSCiZk078x1fZQoaAZoCWgPQwjGqGvtferwv5SGlFKUaBVLMmgWR0C0gmoSDh99dX2UKGgGaAloD0MIl/+Qfvs687+UhpRSlGgVSzJoFkdAtIJL+qBEr3V9lChoBmgJaA9DCBaInpRJDfS/lIaUUpRoFUsyaBZHQLSDJ3JPqLV1fZQoaAZoCWgPQwgOvFruzETzv5SGlFKUaBVLMmgWR0C0gwIrrgO0dX2UKGgGaAloD0MIHHi13JkJ8L+UhpRSlGgVSzJoFkdAtILiqo60Y3V9lChoBmgJaA9DCAM/qmG/Z/O/lIaUUpRoFUsyaBZHQLSCxLoOhCd1fZQoaAZoCWgPQwi2upwSEBPzv5SGlFKUaBVLMmgWR0C0g6Ih2W6cdX2UKGgGaAloD0MIEK/rF+yG8r+UhpRSlGgVSzJoFkdAtIN82Jiy6nV9lChoBmgJaA9DCHY3T3XIze6/lIaUUpRoFUsyaBZHQLSDXVwxWT51fZQoaAZoCWgPQwhlxAWgUfryv5SGlFKUaBVLMmgWR0C0gz86/7BPdX2UKGgGaAloD0MIjNgngGKk8L+UhpRSlGgVSzJoFkdAtIQYwQDmsHV9lChoBmgJaA9DCDXuzW+YaPW/lIaUUpRoFUsyaBZHQLSD84DcM3J1fZQoaAZoCWgPQwiA7suZ7Uryv5SGlFKUaBVLMmgWR0C0g9QSzw+ddX2UKGgGaAloD0MIGAltOZci87+UhpRSlGgVSzJoFkdAtIO1+az/qHV9lChoBmgJaA9DCD3TS4xlOvG/lIaUUpRoFUsyaBZHQLSEjpZwGW51fZQoaAZoCWgPQwh5eTpXlJL0v5SGlFKUaBVLMmgWR0C0hGlImPYGdX2UKGgGaAloD0MIr7X3qSo087+UhpRSlGgVSzJoFkdAtIRJ0IToMnV9lChoBmgJaA9DCIS8HkyKD/W/lIaUUpRoFUsyaBZHQLSEK68QI2R1fZQoaAZoCWgPQwgUlQ1rKkv1v5SGlFKUaBVLMmgWR0C0hQZ+hGpddX2UKGgGaAloD0MIXtpwWBp49L+UhpRSlGgVSzJoFkdAtIThO8Cgb3V9lChoBmgJaA9DCGPt72yPHvC/lIaUUpRoFUsyaBZHQLSEwbAUL2J1fZQoaAZoCWgPQwjqeTcWFIbzv5SGlFKUaBVLMmgWR0C0hKOQuEmIdX2UKGgGaAloD0MIiUD1DyKZ87+UhpRSlGgVSzJoFkdAtIV8BvJiiXV9lChoBmgJaA9DCFBSYAFMGfG/lIaUUpRoFUsyaBZHQLSFVr/bTMJ1fZQoaAZoCWgPQwhM4UGz6172v5SGlFKUaBVLMmgWR0C0hTc8cMmXdX2UKGgGaAloD0MIb4Jvmj7787+UhpRSlGgVSzJoFkdAtIUZH7P6bnV9lChoBmgJaA9DCFvQe2MIgPC/lIaUUpRoFUsyaBZHQLSF+0oBq9J1fZQoaAZoCWgPQwhLkuf6Ppzzv5SGlFKUaBVLMmgWR0C0hdYDTz/ZdX2UKGgGaAloD0MIc7nBUIeV9L+UhpRSlGgVSzJoFkdAtIW2fkFOf3V9lChoBmgJaA9DCDoDIy9r4vK/lIaUUpRoFUsyaBZHQLSFmGtITXd1fZQoaAZoCWgPQwgS+pl63SLtv5SGlFKUaBVLMmgWR0C0hnLApKBedX2UKGgGaAloD0MIFTjZBu6A9L+UhpRSlGgVSzJoFkdAtIZNo24usnV9lChoBmgJaA9DCNWUZB2OLvC/lIaUUpRoFUsyaBZHQLSGLjBl+Vl1fZQoaAZoCWgPQwilFkomp7b1v5SGlFKUaBVLMmgWR0C0hhA3YL9ddX2UKGgGaAloD0MIZjGx+bj28b+UhpRSlGgVSzJoFkdAtIbmY1He8HV9lChoBmgJaA9DCJxtbkxPmPa/lIaUUpRoFUsyaBZHQLSGwSVnmJZ1fZQoaAZoCWgPQwhCdt7GZgfzv5SGlFKUaBVLMmgWR0C0hqGfbsWwdX2UKGgGaAloD0MIH7qgvmXO9L+UhpRSlGgVSzJoFkdAtIaDlLeyiXV9lChoBmgJaA9DCMAIGjOJ+vC/lIaUUpRoFUsyaBZHQLSHX//echF1fZQoaAZoCWgPQwjB5bFmZBDxv5SGlFKUaBVLMmgWR0C0hzrftQbddX2UKGgGaAloD0MItRt9zAfE8b+UhpRSlGgVSzJoFkdAtIcbaCcwxnV9lChoBmgJaA9DCPa1LjVCP/a/lIaUUpRoFUsyaBZHQLSG/UX531V1fZQoaAZoCWgPQwhyTuyhfazzv5SGlFKUaBVLMmgWR0C0h9MwlByCdX2UKGgGaAloD0MIvfxOkxlv9b+UhpRSlGgVSzJoFkdAtIet56dDpnV9lChoBmgJaA9DCNjyyvW2GfS/lIaUUpRoFUsyaBZHQLSHjmIj4Yd1fZQoaAZoCWgPQwjxnZj1Ymjyv5SGlFKUaBVLMmgWR0C0h3BJyyUtdX2UKGgGaAloD0MIlrN3RlvV9b+UhpRSlGgVSzJoFkdAtIhFwgkkbHV9lChoBmgJaA9DCAt9sIwNXfS/lIaUUpRoFUsyaBZHQLSIIJXyRSx1fZQoaAZoCWgPQwhYVS+/0yTyv5SGlFKUaBVLMmgWR0C0iAEPUaybdX2UKGgGaAloD0MIcjeI1oq28L+UhpRSlGgVSzJoFkdAtIfjLEDQq3V9lChoBmgJaA9DCF9DcFzGzfK/lIaUUpRoFUsyaBZHQLSI9Z6D5CZ1fZQoaAZoCWgPQwhZGCKnryfyv5SGlFKUaBVLMmgWR0C0iNCSq2jPdX2UKGgGaAloD0MId0oH6/9c9b+UhpRSlGgVSzJoFkdAtIixQuVX3nV9lChoBmgJaA9DCEht4uR+R/C/lIaUUpRoFUsyaBZHQLSIk2NNrTJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -0.8207400501472876, "std_reward": 0.05906910395127126, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-13T19:29:52.061531"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2381
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5e2297e733707725127c341f67acaa7f582567952c201e6457fcdf0859cb567
|
3 |
size 2381
|